Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: E. coli, S. aureus and C. albicans. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL for C. albicans and C. tropicalis respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mabi.202400032 | DOI Listing |
Water Res X
May 2025
School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China.
Anaerobic ammonia oxidation (anammox) which converts nitrite and ammonium to dinitrogen gas is an energy-efficient nitrogen removal process. One of the bottlenecks for anammox application in wastewater treatment is the stable supply of nitrite for anammox bacteria. Dissimilatory nitrate reduction to ammonium (DNRA) is a process that converts nitrate to nitrite and then to ammonium.
View Article and Find Full Text PDFCurr Res Food Sci
December 2024
Translational Research Center in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, Medicine, KU Leuven, Leuven, Belgium.
Sourdough bread consumption has been associated with improved glucose and appetite regulation thanks to the presence of organic acids produced during fermentation of the flour-water mixture. We investigated the effects of whole meal sourdough bread (WSB) rich in lactic acid on energy intake, satiety, gastric emptying, glucose, and C-peptide response compared to whole meal yeast bread (WYB). Forty-four normal-weight participants (age: 30 ± 10 y; BMI: 23 ± 2 kg/m) participated in this double-blind, randomized cross-over trial, consisting of two study visits separated by one week.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
Background And Aim: A critical causative factor of oxidative stress and inflammation leading to several skin complications is ultraviolet-B (UVB) irradiation. (LR), or tiger milk mushroom, is native to Southeast Asia. Cold water extract of an LR cultivar, TM02® (xLr®) is a promising anti-oxidant and anti-inflammatory source.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585, Japan.
Divergent synthesis of triazoles was achieved using newly designed platform molecules possessing azide, alkyne, and fluorosulfonyl moieties. Consecutive conjugations by the sulfur(VI) fluoride exchange and following consecutive triazole formations allowed us to prepare a wide variety of bis(triazole)s by virtue of selective transformations. One-pot triple-click assembly of easily accessible modules led to the facile synthesis of middle-molecular-weight triazoles with various functional moieties.
View Article and Find Full Text PDFBiomacromolecules
January 2025
BioComposites Centre, Bangor University, Bangor LL57 2UW, U.K.
Wood modification using low molecular weight thermosetting resins improves the biological durability and dimensional stability of wood while avoiding increasingly regulated biocides. During the modification process, resin monomers diffuse from the cell lumen to the cell wall, occupying micropore spaces before curing at 150 °C. This study investigated the mechanism of cell wall diffusion at multiple scales, comparing two test groups where diffusion was either facilitated or restricted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!