Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Understanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in global carbon dioxide levels. Here, we present a genome-scale metabolic model (MK1961) for , an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. MK1961 represents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. With MK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. Comparing model predictions with Oceans transcriptomics data unraveled 's metabolism in situ. Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our findings highlight s metabolic flexibility and its potential role in global carbon cycling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC466952 | PMC |
http://dx.doi.org/10.1126/sciadv.ado2623 | DOI Listing |
J Phys Chem Lett
January 2025
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.
Due to the global demands on carbon neutralization, CO separation membranes, particularly those based on two-dimensional (2D) materials, have attracted increasing attention. However, recent works have focused on the chemical decoration of membranes to realize the selective transport, leading to the compromised stability in the presence of moisture. Herein, we develop a series of 2D capillaries based on layered double hydroxide (LDH), graphene oxide, and vermiculite to enhance the oversaturation of CO in the confined water for promoting the membrane permselectivity.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Chemistry and Forensic Science, School of Natural Sciences, University of Kent, Canterbury, UK.
Magnesium-containing molecules, including MgCH, MgCH, and MgCH, have been detected in the interstellar medium, largely facilitated by their high dipole moments. However, despite great efforts, MgCH species remain elusive. Given the challenges in obtaining experimental data for these molecules, theoretical studies play a crucial role in guiding their detection.
View Article and Find Full Text PDFMetab Eng Commun
June 2025
Department of Chemical Engineering, University of Waterloo, Canada.
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes.
View Article and Find Full Text PDFWetlands (Wilmington)
January 2025
Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON Canada.
There are increasing global efforts and initiatives aiming to tackle climate change and mitigate its impacts via natural climate solutions (NCS). Wetlands have been considered effective NCS given their capacity to sequester and retain atmospheric carbon dioxide (CO) while also providing a myriad of other ecosystem functions that can assist in mitigating the impacts of climate change. However, wetlands have a dual impact on climate, influencing the atmospheric concentrations of both CO and methane (CH).
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Nature Positive Solutions, School of Science, STEM College, RMIT University, Melbourne, Australia.
Seaweed aquaculture is growing 8.9 % annually to a forecast US$ 22.13 billion in 2024 and has several environmental, economic and social co-benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!