The indole ring of tryptophan can form NH/π hydrogen bonds, acting both as a hydrogen donor at the NH group in the pyrrole subring and as a hydrogen acceptor at the benzene subring. In the structural core of the trimeric stable protein lectin (PhoSL), three indoles are symmetrically arranged and form NH/π hydrogen bonds among each other. Here, we conducted quantum chemical calculations on this indole triad by using various methods and basis sets. The analyses revealed cooperativity in triad formation, with the many-body effect contributing approximately -2 kcal mol, which significantly stabilizes this protein. Symmetry-adapted perturbation theory ascribed this effect to the induced polarization. The electrostatic potential and atomic charges indeed revealed a charge redistribution through the NH/π hydrogen bond, which was favorable for triad formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.4c02391 | DOI Listing |
Chemistry
March 2017
Department of Chemistry, Indian Institute of Technology Madras, Chennai-, 600036, Tamil Nadu, India.
A design approach that incorporates structural requirements for the formation of a 1D assembly, fibril stability, and fibril-fibril interactions for gelation was attempted by using amino acid-based sulfamides with the general structure Aa-NH-SO -NH-Aa (Aa=amino acid). A preference for 1D assembly alone was not a sufficient condition for gelation, which became evident from studies involving sulfamide esters 1-5. Reducing the crystallization tendency without hindering unidirectional growth was executed through diacids of the sulfamide precursors with various amines that form an envelope around the sulfamide core through salt bridges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!