Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's esophagus progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL-gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But, how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here, we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for heat shock protein 40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain or a cell-permeable peptide (Pep-J) encoding the above 10 amino acids can bind and inhibit DNAJ-Hsp70 co-chaperone activity, thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic Barrett's esophagus and EAC cells and inhibit the growth of patient-derived organoids of dysplastic Barrett's esophagus in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J are comparable with simvastatin, a cholesterol-lowering drug that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase-independent, chaperone-regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530312 | PMC |
http://dx.doi.org/10.1158/1541-7786.MCR-24-0361 | DOI Listing |
Curr Biol
December 2024
The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA. Electronic address:
Serine 31 is a phospho-site unique to the histone H3.3 variant; mitotic phospho-Ser31 is restricted to pericentromeric heterochromatin, and disruption of phospho-Ser31 results in chromosome segregation defects and loss of p53-dependant G cell-cycle arrest. Ser31 is proximal to the H3.
View Article and Find Full Text PDFJ Dev Biol
November 2024
Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
Barth syndrome (BTHS) is a rare, infantile-onset, X-linked mitochondriopathy exhibiting a variable presentation of failure to thrive, growth insufficiency, skeletal myopathy, neutropenia, and heart anomalies due to mitochondrial dysfunction secondary to inherited TAFAZZIN transacetylase mutations. Although not reported in BTHS patients, male infertility is observed in several () mouse alleles and in a mutant. Herein, we examined the male infertility phenotype in a BTHS-patient-derived point-mutant knockin mouse () allele that expresses a mutant protein lacking transacetylase activity.
View Article and Find Full Text PDFThorac Cancer
December 2024
Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.
Concurrent mutations in tumor protein p53 (TP53) or Kelch-like ECH-associated protein 1-nuclear factor erythroid 2-related factor 2-pathway components are linked to poor outcomes in epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer (NSCLC), but the impact of triple mutations remains unclear. We report a case of EGFR-, TP53-, and Cullin 3 (CUL3)-mutant NSCLC in a 43-year-old woman with widespread metastases at diagnosis, including those in the contralateral lung, distant lymph nodes, pericardium, liver, bones, left adrenal gland, and brain. She received osimertinib as first-line therapy, but pericardial effusion and liver metastases progressed rapidly over 3 months, and she was switched to carboplatin and pemetrexed.
View Article and Find Full Text PDFJ Am Heart Assoc
December 2024
Department of Cardiology, Pulmonology, and Nephrology Yamagata University School of Medicine Yamagata Japan.
Background: Doxorubicin-induced cardiotoxicity is still an important medical problem associated with a high mortality rate in cancer survivors. p53 plays a key role in doxorubicin-induced cardiotoxicity. Diacylglycerol kinase ζ (Dgkζ), a 130-kDa enzyme abundant in cardiomyocytes, regulates the p53 protein expression level in neurons.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Pharmacological reactivation of the tumor suppressor p53 remains a key challenge for the treatment of cancer. Acetylation Targeting Chimera (AceTAC), a novel technology is previously reported that hijacks lysine acetyltransferases p300/CBP to acetylate the p53Y220C mutant. However, p300/CBP are the only acetyltransferases harnessed for AceTAC development to date.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!