Triarylamine--fluorene (TAF) copolymers are widely used for hole injection and transport in organic electronics. Despite suggestions to planarize the triphenylamine moiety, little research has been conducted. Here, we report a comprehensive investigation of the effects of planarization on the electronic and transport properties of a model TAF polymer semiconductor core. We compared the conventional twisted-propeller -4-methoxyphenyl-,-diphenylamine-4',4″-diyl (TA) unit and its planarized bridged analogue (bTA) where adjacent ,'-positions are linked by 1,1-dimethylmethylene. We studied both polyelectrolyte and non-polyelectrolyte forms of this core in both doped and undoped states. We found that planarization leads to an unprecedented trap-free transport of holes, and a pronounced enhancement of their mobility in the undoped state though less so in the doped state. Planarization also induces a slight reduction in the ionization energy of the undoped polymer, consequently lowering the work function of the doped polymer. This is accompanied by small spectral shifts: a red shift in the first absorption band of the undoped polymer and a blue shift in the first absorption band of the polaron. Furthermore, this study unveils new fundamental features of TAF polymers: (i) Doping induces the formation of three polaron bands within the subgap. (ii) Absorption of both neutral and polaron segments exhibit a linear intensity relationship with doping level. (iii) Electrical conductivity reaches a maximum at the half-doped state, varying as σ ∼ ( (1 - )) for 0.1 ≲ ≲ 0.9, where is the doping level. Finally, we demonstrate the successful integration of these self-compensated hole-doped TAF polymers as efficient hole injection layers in organic semiconductor diodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299140 | PMC |
http://dx.doi.org/10.1021/acsami.4c05254 | DOI Listing |
Small
December 2024
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan, 411105, P. R. China.
Photocatalysis has garnered significant attention as a sustainable approach for energy conversion and environmental management. 2D black phosphorus (BP) has emerged as a highly promising semiconductor photocatalyst owing to its distinctive properties. However, inherent issues such as rapid recombination of photogenerated electrons and holes severely impede the photocatalytic efficacy of single BP.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Via A. Moro 2, Siena 53100, Italy.
The functional units of natural photosynthetic systems control the process of converting sunlight into chemical energy. In this article, we explore a series of chemically and structurally modified bacteriochlorophyll and chlorophyll pigments through computational chemistry to evaluate their electronic spectroscopy properties. More specifically, we use multiconfigurational and time-dependent density functional theory methods, along with molecular dynamics simulations, to compute the models' energetics both in an implicit and explicit solvent environment.
View Article and Find Full Text PDFJ Nat Prod
December 2024
Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal.
Genome mining has emerged as an important tool for the discovery of natural products and is particularly effective for the swift identification of ribosomally synthesized and post-translationally modified peptides (RiPPs). Among RiPPs, cyanobactins have gained attention due to their diverse structures and bioactive properties. Here, we explored the Microcoleaceae cyanobacterium LEGE 16532 strain and identified the biosynthetic gene cluster (BGC), which was predicted to encode cyanobactin-like molecules.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. Electronic address:
Photocatalytic oxygen evolution reaction (OER) is pivotal for sustainable energy systems yet lacks high-performance catalysts capable of strong visible light absorption, robust charge dynamics, fast reaction kinetics, and high oxidation capability. Herein, we report the multiscale optimization of carbon nitride through the construction of porous curled carbon nitride nanosheets (CNA-B30) incorporating boron center/cyano group Lewis acid-base pairs (LABPs). The unique chemical and structural features of CNA-B30 extended the photoabsorption edges of π → π* and n → π* electronic transitions to 470 nm and 715 nm, respectively.
View Article and Find Full Text PDFMethodsX
December 2024
Department of Electrical Engineering, College of Engineering Al-Hussein Bin Talal, University, Ma'an 71111, Jordan.
Coplanar waveguide (CPW) transmission lines are valued for their planar design, low radiation, and minimized signal loss, but controlling their characteristic impedance remains a challenge. This study employs the Taguchi method, a statistical approach, to optimize the characteristic impedance by adjusting eight control factors: track width, track thickness, gap width, dielectric height, backplane thickness, conductor material conductivity, dielectric conductivity, and operational frequency. The analysis evaluates these factors across three levels to find optimal conditions, with dielectric height and track width identified as most influential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!