In fully supervised learning-based medical image classification, the robustness of a trained model is influenced by its exposure to the range of candidate disease classes. Generalized Zero Shot Learning (GZSL) aims to correctly predict seen and novel unseen classes. Current GZSL approaches have focused mostly on the single-label case. However, it is common for chest X-rays to be labelled with multiple disease classes. We propose a novel multi-modal multi-label GZSL approach that leverages feature disentanglement andmulti-modal information to synthesize features of unseen classes. Disease labels are processed through a pre-trained BioBert model to obtain text embeddings that are used to create a dictionary encoding similarity among different labels. We then use disentangled features and graph aggregation to learn a second dictionary of inter-label similarities. A subsequent clustering step helps to identify representative vectors for each class. The multi-modal multi-label dictionaries and the class representative vectors are used to guide the feature synthesis step, which is the most important component of our pipeline, for generating realistic multi-label disease samples of seen and unseen classes. Our method is benchmarked against multiple competing methods and we outperform all of them based on experiments conducted on the publicly available NIH and CheXpert chest X-ray datasets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3429471DOI Listing

Publication Analysis

Top Keywords

unseen classes
12
generalized shot
8
feature disentanglement
8
disease classes
8
multi-modal multi-label
8
representative vectors
8
classes
5
multi-label
4
multi-label generalized
4
shot chest
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!