Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In medical diagnostics, the accurate classification and analysis of biomedical signals play a crucial role, particularly in the diagnosis of neurological disorders such as epilepsy. Electroencephalogram (EEG) signals, which represent the electrical activity of the brain, are fundamental in identifying epileptic seizures. However, challenges such as data scarcity and imbalance significantly hinder the development of robust diagnostic models. Addressing these challenges, in this paper, we explore enhancing medical signal processing and diagnosis, with a focus on epilepsy classification through EEG signals, by harnessing AI-generated content techniques. We introduce a novel framework that utilizes generative adversarial networks for the generation of synthetic EEG signals to augment existing datasets, thereby mitigating issues of data scarcity and imbalance. Furthermore, we incorporate an attention-based temporal convolutional network model to efficiently process and classify EEG signals by emphasizing salient features crucial for accurate diagnosis. Our comprehensive evaluation, including rigorous ablation studies, is conducted on the widely recognized Bonn Epilepsy Data. The results achieves an accuracy of 98.89% and F1 score of 98.91%. The findings demonstrate substantial improvements in epilepsy classification accuracy, showcasing the potential of AI-generated content in advancing the field of medical signal processing and diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3429560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!