A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Degradation and detoxification of ribavirin by UV/chlorine/Fe(II) process in water treatment system. | LitMetric

Degradation and detoxification of ribavirin by UV/chlorine/Fe(II) process in water treatment system.

Environ Sci Pollut Res Int

College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350117, Fujian, China.

Published: July 2024

Ribavirin (RBV), which is extensively used to treat viral diseases such as COVID-19, is considered one of the major emerging contaminants due to its long-term existence and health risk in the aqueous environmental system. However, research on effective removal of RBV still remains insufficient. In this study, we investigated the RBV degradation kinetics and mechanism in UV/chlorine/Fe(II) process. The degradation rate constant k of RBV was 2.52 × 10 s in UV/chlorine/Fe(II) process, which increased by 1.6 times and 1.3 times than that in chlorine alone and UV/chlorine process, respectively. Notably, trace amount Fe(II) promoted RBV degradation in UV/chlorine system through Fe/Fe cycles, enhancing the yield of reactive species such as HO· and certain species reactive chlorine radicals (RCS). The contributions of HO· and RCS toward RBV degradation were 53.91% and 16.11%, respectively. Specifically, Cl·, ClO·, and Cl· were responsible for 8.59%, 2.69%, and 4.83% of RBV removal. The RBV degradation pathway indicated that the reactive species preferentially attacked the amide moiety of RBV, which cleaved the ether bond and the hydroxyl group. The toxicity evaluation of RBV degradation products elucidated that UV/chlorine/Fe(II) process was beneficial for RBV detoxification.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-34399-zDOI Listing

Publication Analysis

Top Keywords

rbv degradation
20
uv/chlorine/feii process
16
rbv
11
removal rbv
8
reactive species
8
degradation
7
process
5
degradation detoxification
4
detoxification ribavirin
4
uv/chlorine/feii
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!