Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of this study was to develop an optimal, simple, and lightweight deep learning convolutional neural network (CNN) model to detect the presence of mesiodens on panoramic radiographs. A total of 628 panoramic radiographs with and without mesiodens were used as training, validation, and test data. The training, validation, and test dataset were consisted of 218, 51, and 40 images with mesiodens and 203, 55, and 61 without mesiodens, respectively. Unclear panoramic radiographs for which the diagnosis could not be accurately determined and other modalities were required for the final diagnosis were retrospectively identified and employed as the training dataset. Four CNN models provided within software supporting the creation of neural network models for deep learning were modified and developed. The diagnostic performance of the CNNs was evaluated according to accuracy, precision, recall and F1 scores, receiver operating characteristics (ROC) curves, and area under the ROC curve (AUC). In addition, we used SHapley Additive exPlanations (SHAP) to attempt to visualize the image features that were important in the classifications of the model that exhibited the best diagnostic performance. A binary_connect_mnist_LeNet model exhibited the best performance of the four deep learning models. Our results suggest that a simple lightweight model is able to detect mesiodens. It is worth referring to AI-based diagnosis before an additional radiological examination when diagnosis of mesiodens cannot be made on unclear images. However, further revaluation by the specialist would be also necessary for careful consideration because children are more radiosensitive than adults.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10266-024-00980-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!