Structural Complexities in Sodium Ion Conductive Antiperovskite Revealed by Cryogenic Transmission Electron Microscopy.

Nano Lett

Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Published: July 2024

We use low-dose cryogenic transmission electron microscopy (cryo-TEM) to investigate the atomic-scale structure of antiperovskite NaNHBH crystals by preserving the room-temperature cubic phase and carefully monitoring the electron dose. Via quantitative analysis of electron beam damage using selected area electron diffraction, we find cryogenic imaging provides 6-fold improvement in beam stability for this solid electrolyte. Cryo-TEM images obtained from flat crystals revealed the presence of a new, long-range-ordered supercell with a cubic phase. The supercell exhibits doubled unit cell dimensions of 9.4 Å × 9.4 Å as compared to the cubic lattice structure revealed by X-ray crystallography of 4.7 Å × 4.7 Å. The comparison between the experimental image and simulated potential map indicates the origin of the supercell is a vacancy ordering of sodium atoms. This work demonstrates the potential of using cryo-TEM imaging to study the atomic-scale structure of air- and electron-beam-sensitive antiperovskite-type solid electrolytes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c01996DOI Listing

Publication Analysis

Top Keywords

cryogenic transmission
8
transmission electron
8
electron microscopy
8
atomic-scale structure
8
cubic phase
8
electron
5
structural complexities
4
complexities sodium
4
sodium ion
4
ion conductive
4

Similar Publications

In the present study, the stability of a supersaturated solution of indomethacin (IM) was evaluated in hydrophobically modified hydroxypropylmethylcellulose (HM-HPMC) solutions, with and without parent cyclodextrins (CDs). A highly supersaturated state of IM was maintained in the HM-HPMC solution and was further stabilized by the addition of α-CD and β-CD. Notably, the highest level of supersaturation was achieved in HM-HPMC/α-CD solution, which maintained a high concentration of IM for up to 120 h.

View Article and Find Full Text PDF

Hypothesis: The oil phase controls the persistence length and aqueous channel diameter of reverse wormlike micelles (RWLMs), specifically by tuning the cohesive energy density of alkanes.

Experiments: We explore the influence of alkanes with varying chain lengths on the rheological properties, structural parameters, and morphology of RWLMs. To establish a link between the solvent characteristics and the structure of RWLMs, we employ a diverse set of complementary techniques, including rheological analysis, small-angle X-ray scattering (SAXS), Fourier-transform infrared (FT-IR) spectroscopy, and cryogenic transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Constructing feasible sodium metal batteries (SMBs) faces complex challenges in stabilizing cathodes and sodium metal anodes. It is imperative, but often underemphasized, to simultaneously regulate the solid-electrolyte interphase (SEI) to counter dendrite growth and the cathode-electrolyte interphase (CEI) to mitigate cathode deterioration. Herein, we introduce lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) as an efficacious additive in a carbonate-based electrolyte to extend cycle lifespan of full SMBs: the capacity retention reaches 77.

View Article and Find Full Text PDF

Transmission electron microscopy, especially at cryogenic temperature, is largely used for studying biological macromolecular complexes. A main difficulty of TEM imaging of biological samples is the weak amplitude contrasts due to electron diffusion on light elements that compose biological organisms. Achieving high-resolution reconstructions implies therefore the acquisition of a huge number of TEM micrographs followed by a time-consuming image analysis.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!