A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Uncovering the binding nature of thiocyanate in contact ion pairs with lithium ions. | LitMetric

AI Article Synopsis

  • Ion pair formation is a key molecular process involving the interaction of ions, with thiocyanate (SCN-) forming contact ion pairs (CIPs) with cations, particularly lithium, depending on the solvent.
  • The study utilizes FTIR and 2D infrared spectroscopy to explore how thiocyanate binds through its sulfur or nitrogen atoms, revealing that 2DIR effectively distinguishes between binding modes, whereas linear IR cannot due to overlapping frequency ranges.
  • The findings indicate that the dynamics and line shape parameters of the binding modes, whether N-bound or S-bound thiocyanate, differ significantly, showcasing unique behavior based on the solvent environment and the peculiarities of the interaction mechanisms.

Article Abstract

Ion pair formation is a fundamental molecular process that occurs in a wide variety of systems, including electrolytes, biological systems, and materials. In solution, the thiocyanate (SCN-) anion interacts with cations to form contact ion pairs (CIPs). Due to its ambidentate nature, thiocyanate can bind through either its sulfur or nitrogen atoms, depending on the solvent. This study focuses on the binding nature of thiocyanate with lithium ions as a function of the solvents using FTIR, 2D infrared spectroscopy (2DIR) spectroscopies, and theoretical calculations. The study reveals that the SCN- binding mode (S or N end) in CIPs can be identified through 2DIR spectroscopy but not by linear IR spectroscopy. Linear IR spectroscopy shows that the CN stretch frequencies are too close to one another to separate N- and S-bound CIPs. Moreover, the IR spectrum shows that the S-C stretch presents different frequencies for the salt in different solvents, but it is related to the anion speciation rather than to its binding mode. A similar trend is observed for the anion bend. 2DIR spectra show different dynamics for N-bound and S-bound thiocyanate. In particular, the frequency-frequency correlation function (FFCF) dynamics extracted from the 2DIR spectra have a single picosecond exponential decay for N-bound thiocyanate and a biexponential decay for S-bound thiocyanate, consistent with the binding mode of the anion. Finally, it is also observed that the binding mode also affects the line shape parameters, probably due to the different molecular mechanisms of the FFCF for N- and S-bound CIPs.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0216491DOI Listing

Publication Analysis

Top Keywords

binding mode
16
nature thiocyanate
12
binding nature
8
contact ion
8
ion pairs
8
lithium ions
8
spectroscopy linear
8
linear spectroscopy
8
s-bound cips
8
2dir spectra
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!