Fluorescence lifetime imaging microscopy (FLIM) provides spatiotemporal resolution of the changing composition of emulsion droplets during aqueous-surfactant Suzuki coupling. In contrast to previous investigations, the present experiments characterize the full course of a catalytic chemical reaction, addressing key questions about reaction species buildup and correlating these microscale behaviors with bench-scale product yields. At low concentrations of (active) catalyst, droplet environments are stable; however, at higher concentrations, emulsion droplet environments change markedly. These changes are consistent with the buildup and consumption of reaction species inside the droplets. A combination of FLIM and bright-field imaging pinpoints limitations in catalyst solubility as controlling rate and degree of buildup of species in droplets. These solubility limitations are also identified as the cause of a reaction induction period and an origin of the rate-and-reproducibility advantage obtained by adding THF cosolvent. The subsequent mechanistic model from these data led to a bench-scale reaction optimization, wherein premixing the catalyst components bypasses the catalyst induction period, resulting in a faster reaction. The understanding generated by FLIM thus provides an early example of how visualizing changes in droplet compositions on the microscale during ongoing aqueous-organic reactions can be leveraged for enhancing efficiencies in bench-scale reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.4c00918 | DOI Listing |
Molecules
January 2025
Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.
A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.
View Article and Find Full Text PDFMethodsX
June 2025
Heidelberg Institute of Global Health (HIGH), Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany.
and mosquitoes, known for spreading arboviruses like dengue and West Nile, thrive in cities, posing health risks to urban populations. Climate change can create suitable climatic conditions for these vectors to spread further in Europe. Cities contain numerous landscape and infrastructure elements, such as storm drains, that allow stagnant water build-up facilitating mosquito breeding.
View Article and Find Full Text PDFJ Prosthodont Res
January 2025
Department of Prosthodontics, Geriatric Dentistry and Craniomandibular Disorders, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Patient: A 26-year-old man with localized tooth wear and demand for aesthetic rehabilitation of the anterior teeth presented to our department. The patient reported excessive consumption of energy drinks. Furthermore, multiple trauma and tooth fractures have occurred in the past.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.
Environ Sci Technol
December 2024
Center for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, 8000 Aarhus C, Denmark.
Hydroxylamine, nitrous acid, and nitric oxide are obligate intermediates or side metabolites in different nitrogen-converting microorganisms. These compounds are unstable and susceptible to the formation of highly reactive nitrogen species, including nitrogen dioxide, dinitrogen trioxide, nitroxyl, and peroxynitrite. Due to the high reactivity and cytotoxicity, the buildup of reactive nitrogen can affect the interplay of microorganisms/microbial processes, stimulate the reactions with organic compounds like organic micropollutants (OMP) and act as the precursors of nitrous oxide (NO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!