Improved imaging techniques and modern radiotherapy treatment delivery in the treatment field are reduced to the precise size of the tumor, which necessitates the need for small-field dosimetry. Dosimetry in small-field dosimetry is challenging because most of the available code of practice for dosimetry is based on the cavity theory concept. Some small-sized detectors show good spatial resolution and sensitivity. Of the available small detectors, the diamond detector's performance is remarkably good. Most of the centers for radiotherapy lack diamond detectors. In this situation, if a diode detector is available, we can use it for small-field dosimetry by applying the Daisy Chaining method correction methods. In this study, the diode detector's response is not over-responding because of the defective diode. So this diode cannot be used for further measurements, and we have to regularly check the performance of the diode before using it for measurements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/rpd/ncae051 | DOI Listing |
Med Phys
January 2025
Department of Radiation Oncology, Stanford University, Palo Alto, California, USA.
Background: Dosimetric commissioning and quality assurance (QA) for linear accelerators (LINACs) present a significant challenge for clinical physicists due to the high measurement workload and stringent precision standards. This challenge is exacerbated for radiosurgery LINACs because of increased measurement uncertainty and more demanding setup accuracy for small-field beams. Optimizing physicists' effort during beam measurements while ensuring the quality of the measured data is crucial for clinical efficiency and patient safety.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
University Clinic for Medical Radiation Physics, Medical Campus Pius Hospital, Carl von Ossietzky University, Oldenburg, Germany.
Purpose: The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
Background: A stemless plastic scintillation detector (SPSD) is composed of an organic plastic scintillator coupled to an organic photodiode. Previous research has shown that SPSDs are ideally suited to challenging dosimetry measurements such as output factors and profiles in small fields. Lacking from the current literature is a systematic effort to optimize the performance of the photodiode component of the detector.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Medical Physics Laboratory, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, Goudi, 115 27 Athens, Greece.
. Clinical dosimetry in the presence of a 1.5 T magnetic field is challenging, let alone in case small fields are involved.
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
Medical Physics Consultant, INTECNUS Foundation, RP82 8400, San Carlos de Bariloche, Río Negro, Argentina.
. To investigate the effect of the position and orientation of the detector and its influence on the determination of output factors (OF) for small fields for a linear accelerator (MR-linac) integrated with 1.5 T magnetic resonance following the TRS-483 formalism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!