Aerogel fibers have sparked substantial interest as attractive candidates for thermal insulation materials. Developing aerogel fibers with the desired porous structure, good knittability, flame retardancy, and high- and low-temperature resistance is of great significance for practical applications; however, that is very challenging, especially by using an efficient method. Herein, mechanically strong and flexible aerogel fibers with remarkable thermal insulation performance are reported, which are achieved by constructing stiff-soft topological polymer networks and a multilevel hollow porous structure. The combination of polyamide-imide (PAI) with stiff chains and polyurethane (PU) with soft chains is first found to be able to form a topological entanglement architecture. More importantly, multilevel hollow pores can be constructed synchronously through just a one-step and green wet-spinning process. The resultant PAI/PU@340 aerogel fibers show an ultrahigh breaking strength of 94.5 MPa and superelastic property with a breaking strain of 20%. Furthermore, they can be knitted into fabrics with a low thermal conductivity of 25 mW/(m·K) and exhibit attractive thermal insulation property under extremely high (300 °C) and low temperatures (-191 °C), implying them as promising candidates for next-generation thermal insulation materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c07334 | DOI Listing |
Carbohydr Polym
March 2025
Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China. Electronic address:
Due to the increasing pollution of electromagnetic waves and the vigorous development of intelligent electronic devices, there is great interest in finding high-quality electromagnetic wave absorbing materials for integrated control boxes (ICBs) that integrate various electronic components. Polyaniline (PANI) is a new type of absorbing material with great potential due to its designable structure, simple preparation process, low density and adjustable conductivity. Herein, we prepared BCNF/PANI nanoscale conductive fibers with core-shell structure by in-situ growth of PANI on the surface of bacterial cellulose nanofibers (BCNF) by oxidative polymerization and further prepared cellulose/polyaniline/polyvinyl alcohol (BCNF/PANI/PVA) composite aerogel absorbing material by a freeze-drying process.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, PR China. Electronic address:
High-performance solar interface evaporators provide a promising, sustainable, and cost-effective solution to the global freshwater crisis through seawater purification. However, achieving a delicate balance between maximizing the evaporation rate and ensuring continuous, stable, and durable operation presents a critical challenge. Herein, we present a biomimetic cellulose/polypyrrole-coated silica/graphene evaporator with self-assembled nanofiber networks and vertically aligned vessels for enhanced salt resistance.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.
Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.
View Article and Find Full Text PDFSmall
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!