AI Article Synopsis

  • The study investigates risk factors for lateral lymph node metastasis in rectal cancer and aims to improve diagnostic accuracy using machine learning models.
  • It analyzed data from patients who underwent lymph node dissection without prior treatment across 15 Japanese hospitals from 2017 to 2019, focusing on preoperative factors and MRI findings.
  • Results identified key risk factors and developed machine learning models, showing that poorly differentiated adenocarcinoma and certain tumor characteristics significantly increase the likelihood of metastasis.

Article Abstract

Background: The diagnostic criteria for lateral lymph node metastasis in rectal cancer have not been established. This research aimed to investigate the risk factors for lateral lymph node metastasis and develop machine learning models combining these risk factors to improve the diagnostic performance of standard imaging.

Method: This multicentre prospective study included patients who underwent lateral lymph node dissection without preoperative treatment for rectal cancer between 2017 and 2019 in 15 Japanese institutions. First, preoperative clinicopathological factors and magnetic resonance imaging findings were evaluated using multivariable analyses for their correlation with lateral lymph node metastasis. Next, machine learning diagnostic models for lateral lymph node metastasis were developed combining these risk factors. The models were tested in a training set and in an internal validation cohort and their diagnostic performance was tested using receiver operating characteristic curve analyses.

Results: Of 212 rectal cancers, 122 patients were selected, including 232 lateral pelvic sides, 30 sides of which had pathological lateral lymph node metastasis. Multivariable analysis revealed that poorly differentiated/mucinous adenocarcinoma, extramural vascular invasion, tumour deposit and a short-axis diameter of lateral lymph node ≥ 6.0 mm were independent risk factors for lateral lymph node metastasis. Patients were randomly divided into a training cohort (139 sides) and a test cohort (93 sides) and machine learning models were computed on the basis of a combination of significant features (including: histological type, extramural vascular invasion, tumour deposit, short- and long-axis diameter of lateral lymph node, body mass index, serum carcinoembryonic antigen level, cT, cN, cM, irregular border and mixed signal intensity). The top three models with the highest sensitivity in the training cohort were as follows: support vector machine (sensitivity, 1.000; specificity, 0.773), light gradient boosting machine (sensitivity, 0.950; specificity, 0.918) and ensemble learning (sensitivity, 0.950; specificity, 0.917). The diagnostic performances of these models in the test cohort were as follows: support vector machine (sensitivity, 0.750; specificity, 0.667), light gradient boosting machine (sensitivity, 0.500; specificity, 0.852) and ensemble learning (sensitivity, 0.667; specificity, 0.864).

Conclusion: Machine learning models combining multiple risk factors can contribute to improving diagnostic performance of lateral lymph node metastasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252850PMC
http://dx.doi.org/10.1093/bjsopen/zrae073DOI Listing

Publication Analysis

Top Keywords

lateral lymph
44
lymph node
44
node metastasis
32
risk factors
24
machine learning
20
machine sensitivity
16
lateral
12
rectal cancer
12
learning models
12
diagnostic performance
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!