The performance and long-term durability of dental implants hinge on the quality of bone integration and their resistance to bacteria. This research aims to introduce a surface modification strategy for zirconia implants utilizing femtosecond laser ablation techniques, exploring their impact on osteoblast cell behavior and bacterial performance, as well as the integral factors influencing the soft tissue quality surrounding dental implants. Ultrafast lasers were employed to craft nanoscale groove geometries on zirconia surfaces, with thorough analyses conducted using x-ray diffraction, scanning electron microscopy, atomic force microscopy, and water contact angle measurements. The study evaluated the response of human fetal osteoblastic cell lines to textured zirconia ceramics by assessing alkaline phosphatase activity, collagen I, and interleukin 1secretion over a 7 day period. Additionally, the antibacterial behavior of the textured surfaces was investigated using, a common culprit in infections associated with dental implants. Ciprofloxacin (CIP), a widely used antibacterial antibiotic, was loaded onto zirconia ceramic surfaces. The results of this study unveiled a substantial reduction in bacterial adhesion on textured zirconia surfaces. The fine biocompatibility of these surfaces was confirmed through the MTT assay and observations of cell morphology. Moreover, the human fetal osteoblastic cell line exhibited extensive spreading and secreted elevated levels of collagen I and interleukin 1in the modified samples. Drug release evaluations demonstrated sustained CIP release through a diffusion mechanism, showcasing excellent antibacterial activity against pathogenic bacteria, including, and.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-605X/ad606fDOI Listing

Publication Analysis

Top Keywords

dental implants
12
zirconia surfaces
8
human fetal
8
fetal osteoblastic
8
osteoblastic cell
8
textured zirconia
8
collagen interleukin
8
zirconia
5
surfaces
5
tailoring zirconia
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!