Multifunctional Glycopeptide-Based Hydrogel via Dual-Modulation for the Prevention and Repair of Radiation-Induced Skin Injury.

ACS Biomater Sci Eng

State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.

Published: August 2024

The radiation-induced skin injury (RISI) remains a great challenge for clinical wound management and care after radiotherapy, as patients will suffer from the acute radiation injury and long-term chronic inflammatory damage during the treatment. The excessive ROS in the early acute stage and prolonged inflammatory response in the late healing process always hinder therapeutic efficiency. Herein, we developed an extracellular matrix (ECM)-mimetic multifunctional glycopeptide hydrogel (oCP@As) to promote and accelerate RISI repair via a dual-modulation strategy in different healing stages. The oCP@As hydrogel not only can form an ECM-like nanofiber structure through the Schiff base reaction but also exhibits ROS scavenging and DNA double-strand break repair abilities, which can effectively reduce the acute radiation damage. Meanwhile, the introduction of oxidized chondroitin sulfate, which is the ECM polysaccharide-like component, enables regulation of the inflammatory response by adsorption of inflammatory factors, accelerating the repair of chronic inflammatory injury. The animal experiments demonstrated that oCP@As can significantly weaken RISI symptoms, promote epidermal tissue regeneration and angiogenesis, and reduce pro-inflammatory cytokine expression. Therefore, this multifunctional glycopeptide hydrogel dressing can effectively attenuate RISI symptoms and promote RISI healing, showing great potential for clinical applications in radiotherapy protection and repair.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c00698DOI Listing

Publication Analysis

Top Keywords

radiation-induced skin
8
skin injury
8
acute radiation
8
chronic inflammatory
8
inflammatory response
8
multifunctional glycopeptide
8
glycopeptide hydrogel
8
risi symptoms
8
symptoms promote
8
repair
5

Similar Publications

Background: The impact of the dietary macronutrient composition and its subcomponents (saccharides, fatty acids, and protein sources) on radiation-induced acute skin toxicity (AST) in breast cancer (BC) patients is unknown. Hence, we examined the association between dietary macronutrients and their subcomponents and the risk of ≥grade 2 (G2) AST post-radiotherapy among women with BC.

Methods: An observational study was conducted among 161 BC patients treated with radiotherapy and enrolled in the ATHENA project in Italy.

View Article and Find Full Text PDF

This study investigated the lifetime attributable risk (LAR) of radiation-induced breast cancer from mammography screening in Dubai. It aimed to explore the relationship between breast thickness, patient age, and the associated radiation dose during mammographic examinations. A retrospective analysis was conducted on 2601 patients aged 40 to 69 across five screening facilities in Dubai's healthcare system.

View Article and Find Full Text PDF

Radiation dermatitis (RD) is a common side effect in patients receiving radiotherapy. Currently, clinical skincare approaches for acute RD vary widely among institutions and lack consensus. Hydrogen molecules, acting as radioprotective agents by selectively scavenging free radicals, have the potential to protect against RD.

View Article and Find Full Text PDF

Phycocyanin-based multifunctional microspheres for treatment of infected radiation-induced skin injury.

Biomaterials

December 2024

Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China. Electronic address:

Radiation therapy is a primary modality for cancer treatment; however, it often leads to various degrees of skin injuries, ranging from mild rashes to severe ulcerations, for which no effective treatments are currently available. In this study, a multifunctional microsphere (PC@CuS-ALG) was synthesized by encapsulating phycocyanin-templated copper sulfide nanoparticles (PC@CuS) within alginate (ALG) using microfluidic technology. Phycocyanin, a natural protein derived from microalgae, shows abilities to scavenge reactive oxygen species, repair radiation-induced damage to skin cells, and ameliorate macrophage-related inflammatory responses.

View Article and Find Full Text PDF

This study explores the protective role of Atractylodin (ATN) on ultraviolet-B (UVB) radiation-exposed oxidative damage and photoaging responses in human epidermal keratinocytes (HaCaT). In vitro, experiments involved subjecting HaCaT cells to UVB radiation (50 mJ/cm) for a 24 h incubation period, leading to cell death, increased reactive oxygen species (ROS), and DNA damaged lesion (8-Oxo Gunosine). ATN treatment effectively mitigated cell toxicity, ROS generation, and 8-Oxo Gunosine in UVB-exposed HaCaT cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!