Herein, a biomimetic hierarchical porous high entropy alloy (BHP-HEA) is prepared by a strategy combining selective laser melting and selective phase dissolution. It exhibited excellent seawater splitting performance, which only needs a low potential of 1.53 V to realize a current density of 100 mA cm, with exceptional stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cc01502a | DOI Listing |
Tissue Eng Regen Med
January 2025
College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.
Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.
Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.
ACS Appl Mater Interfaces
January 2025
School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, P. R. China.
Efficient thermal generation from solar/electric energy in transparent films remains challenging due to the limited toolbox of high-performance thermal generation materials and methods for microstructure engineering. Here, we proposed a two-step strategy to introduce hierarchical wrinkles to the MXene composite films with high transparency, leading to upgraded photo/electrothermal conversion efficiency. Specifically, the thin film contains protic acid-treated MXene layers assembled with Ag nanowires (H-MXene/Ag NWs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
On the one hand, nature utilizes hierarchical assemblies to create complex biological binding pockets, enabling ultrastrong recognition toward substrates in aqueous solutions. On the other hand, chemists have been fervently pursuing high-affinity recognition by constructing covalently well-preorganized stereoelectronic cavities. The potential of noncovalent assembly, however, for enhancing molecular recognition has long been underestimated.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Applied Chemistry, Chemical Engineering, and Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Yamagata, Japan.
Tactile perception plays a crucial role in the perception of products and consumer preferences. This perception process is structured in hierarchical layers comprising a sensory layer (soft and smooth) and an affective layer (comfort and luxury). In this study, we attempted to predict the evaluation score of sensory and affective tactile perceptions of materials using a biomimetic multimodal tactile sensor that mimics the active touch behavior of humans and measures physical parameters such as force, vibration, and temperature.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Chemistry, Liaoning University, Shenyang, 110036, PR China; Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Yingkou Institute of Technology, Yingkou, 115014, PR China. Electronic address:
Basic dyes are highly toxic and have adverse effects on humans such as accelerated heart rate, shock, cyanosis, and tissue necrosis upon ingestion or skin contact. Efficient removal of basic dye pollutants from wastewater is therefore essential for the protection of the environment and human health. Biomolecules exhibit excellent dye removal performance in terms of removal capacity, selectivity, and rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!