Background And Aims: Blood metabolite abnormalities have revealed an association with cholestatic liver diseases (CLDs), while the underlying metabolic mechanisms have remained sluggish yet. Accordingly, the present evaluation aims to investigate the causal relationship between blood metabolites and the risk of two major CLDs, including primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC).

Methods: Univariable and multivariable Mendelian randomization (MR) approaches were employed to uncover potential causal associations between blood metabolites and 2 CLDs, including PBS and PSC, through extracting instrumental variables (IVs) for metabolites from genome-wide association studies (GWAS) conducted on European individuals. The GWAS summary data of PBC or PSC were sourced from two distinct datasets. The initial analysis employed inverse variance weighted (IVW) and an array of sensitivity analyses, followed by replication and meta-analysis utilizing FinnGen consortium data. Finally, a multivariable MR analysis was carried out to ascertain the independent effects of each metabolite. Furthermore, the web-based tool MetaboAnalyst 5.0 was used to perform metabolic pathway examination.

Results: A genetic causality between 15 metabolites and CLDs was recognized after preliminary analysis and false discovery rate (FDR) correction. Subsequently, 9 metabolites consistently represented an association through replication and meta-analysis. Additionally, the independent causal effects of 7 metabolites were corroborated by multivariable MR analysis. Specifically, the metabolites isovalerylcarnitine (odds ratio [OR] = 3.146, 95% confidence intervals [CI]: 1.471-6.726,  = 0.003), valine (OR = 192.44, 95%CI: 4.949-7483.27,  = 0.005), and mannose (OR = 0.184, 95%CI: 0.068-0.499,  < 0.001) were found to have a causal relationship with the occurrence of PBC. Furthermore, erythrose (OR = 5.504, 95%CI: 1.801-16.821,  = 0.003), 1-stearoylglycerophosphocholine (OR = 6.753, 95%CI: 2.621-17.399,  = 7.64 × 10), X-11847 (OR = 0.478, 95%CI: 0.352-0.650,  = 2.28 × 10), and X-12405 (OR = 3.765, 95%CI: 1.771-8.005,  = 5.71 × 10) were independently associated with the occurrence of PSC. Furthermore, the analysis of metabolic pathways identified seven significant pathways in two CLDs.

Conclusion: The findings of the present study have unveiled robust causal relationships between 7 metabolites and 2 CLDs, thereby providing novel insights into the metabolic mechanisms and therapeutic strategies for these disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250271PMC
http://dx.doi.org/10.3389/fmed.2024.1395526DOI Listing

Publication Analysis

Top Keywords

causality metabolites
8
cholestatic liver
8
liver diseases
8
mendelian randomization
8
blood metabolites
8
clds including
8
metabolites clds
8
replication meta-analysis
8
multivariable analysis
8
metabolites
7

Similar Publications

Targeted metabolomics reveals novel diagnostic biomarkers for colorectal cancer.

Mol Oncol

January 2025

Shanghai Stomatological Hospital & School of Stomatology & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30).

View Article and Find Full Text PDF

Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp.

View Article and Find Full Text PDF

Background: The recent European-ancestry based genome-wide association study (GWAS) of Alzheimer disease (AD) by Bellenguez2022 has identified 75 significant genetic loci, but only a few have been functionally mapped to effector gene level. Besides the large-scale RNA expression, protein and metabolite levels are key molecular traits bridging the genetic variants to AD risk, and thus we decided to integrate them into the genetic analysis to pinpoint key proteins and metabolites underlying AD etiology. Few studies have generated more than one layer of post-transcriptional phenotypes, limiting the scale of biological translation of disease modifying treatments.

View Article and Find Full Text PDF

Background: Host commensal gut microbes are shown to be crucial for microglial maturation, and functions that involve innate immune responses to maintain brain homeostasis. Sex has a crucial role in the incidence of neurological diseases with females showing higher progression of AD compared with males. Transcriptomics has been a powerful tool for the characterization of microglial phenotypes however, there is a large gap in relating to their functional protein abundances.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA.

Background: Microglia are dominant immune cells residing in the brain that regulate brain homeostasis and T-cell responses. An important immune function of microglia involves presenting microbial antigens to mucosal-associated invariant T (MAIT) cells; MAIT cells recognize microbial vitamin B-derived metabolites presented by the MHC class I-like molecule, MR1. Our recent findings highlighted a detrimental role for the MR1/MAIT cell axis in Alzheimer's disease (AD) using the 5XFAD mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!