Background: Among all regenerative applications developed in recent years, the use of exosomes has generated by far the greatest interest. Exosome products from allogeneic and xenogeneic sources are available on the market. A key challenge is controlling the effects of nonautologous exosomes. We hypothesized that combining exosomes with a patient's own extracellular matrix (ECM) can create "autologization," enabling control over their effects. This study aimed to provide the rationale and a guide for future research exploring the autologization of exosome applications using deparenchymized adipose tissue (DPAT).
Methods: DPAT adipose tissue was achieved using 1200-, 400-, and 35-micrometer blades in an ultrasharp blade system (Adinizer), and then "autologization" was achieved by combining the obtained DPAT with allogeneic exosomes. DPAT was evaluated histochemically, and exosomes were counted and analyzed with the Nanosight device.
Results: The DPAT process using ultrasharp blades is easily performed. DPAT obtained from adipose tissue was then combined with allogenic exosomes. It has been demonstrated histopathologically that adipocytes are eliminated in deparenchymized fat tissue, and only ECM and stromal cells remain. It has also been proven that the number of exosomes is not affected by the combination.
Conclusions: This study introduces two novel concepts previously unknown in the literature, "deparenchymization" and "autologization," representing an innovative approach in plastic surgery and regenerative medicine. Our novel approach enriches regenerative cells while preserving critical ECM signals, overcoming the limitations of existing isolation methods. Extensive research is still needed, but autologization using DPAT ECM holds great promise for translating exosome-based treatments into practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251682 | PMC |
http://dx.doi.org/10.1097/GOX.0000000000005982 | DOI Listing |
With complex pathogenesis, Alzheimer's disease (AD) is a neurological illness that has worsened over time. Inter-organ crosstalk, which is essential for coordinating organ function and maintaining homeostasis, is involved in multiple physiological and pathological events. Increasing evidence suggests that AD is closely associated with multiple diseases of peripheral organs, including the gut, adipose tissue, liver, and bone.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Cholesterol is vital for nerve processes. Changes in cholesterol homeostasis lead to neurodegeneration and Alzheimer's disease (AD). In recent years, extensive research has confirmed the influential role of adipose tissue mesenchymal stem cells (MSCs) in managing AD.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Orthopaedic Surgery, Weill Medical College of Cornell University, New York, New York, USA.
Background: Microfragmented adipose tissue has been proposed for intra-articular treatment of knee osteoarthritis. There are little data comparing the outcomes of treatment between microfragmented adipose tissue and other biological treatments.
Purpose: To perform a systematic review and meta-analysis comparing microfragmented aspirated fat injections to other orthobiologics, hyaluronic acid, and corticosteroid injections for symptomatic knee osteoarthritis.
Alzheimers Dement
December 2024
Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.
Background: Age-related decrease glucose utilization, coupled with insulin resistance, are key features of AD, resulting in reduced glucose utilization/catabolism and oxidative stress generation. Irisin, an exercise-induced hormone promoting mitochondrial biogenesis in adipocytes via PGC-1α, stimulates thermogenic pathways, increases energy expenditure and induces browning of adipose tissue. Further, irisin expression was shown to trigger neuroprotection in AD models.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Arizona, Tucson, AZ, USA.
Background: Research into Alzheimer's Disease (AD) pathomechanisms frequently utilizes animal models with dominant mutations; however, the vast majority (>95%) of AD cases are idiopathic. Animal models with AD risk factors represent an approach with potentially greater translational validity. The predominant genetic risk factor for AD is the Apolipoprotein E ε4 (APOE4) polymorphism, with APOE4 homozygosity conferring approximately 15-fold higher risk relative to the normative APOE3/3 genotype.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!