In nuclear medicine, theranostic probes that combine nuclear imaging capabilities with therapeutic functions have shown promise for the diagnosis and treatment of cancers. Nevertheless, the development of theranostic probes may be constrained by two principal factors: (1) the discrepancy between the slow accumulation time of the probes in the tumours and the short-lived radionuclides, and (2) the suboptimal imaging/treatment effect and high radioactive toxicity caused by long-lived radionuclides. In recent years, pretargeted strategy has been proposed as a potential solution to solve these problems. In the pretargeted strategy, two components consisting of a tumour-targeting vector (e. g., antibody) and a radionuclide are injected separately, which can then couple in the tumour tissues to trap radionuclides for nuclear imaging and/or therapy. This two-step process allows for the independent optimization of the pharmacokinetics of them in vivo, benefiting to improve nuclear imaging and/or therapy of tumours in vivo. In this concept, we will discuss the principle of the pretargeted strategy, with a focus on the discussion of different tumour-targeting vectors, including antibody-mediated delivery, nanoparticle-mediated delivery, metabolic glycan labeling-mediated accumulation, and enzyme-triggered in situ self-assembly-mediated retention. Finally, we will discuss the current challenges and perspectives on their applications for cancer theranostics in clinics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cmdc.202400462 | DOI Listing |
Bioorg Chem
December 2024
School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China; College of Pharmacy, Dali University, Xia Guan, Dali, Yunnan 6710000, PR China. Electronic address:
Background: Tumor-specific molecular probe-based imaging strategies have shown great potential for tumor diagnosis. However, the sensitivity and contrast of imaging may interfere with the complex labeling process and degradation of tumor-specific imaging probes. We sought to adapt a pretargeting strategy and an in vivo bioorthogonal reaction to improve hyaluronan (HA)-based tumor multimodal imaging diagnosis.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg 67000, France.
SAr reactions were remarkably accelerated using a pretargeting and activating unit based on dynamic covalent chemistry (DCvC). A Cys attack at the C-F bond on the aromatic ring of salicylaldehyde derivatives was only observed upon iminium formation with a neighboring Lys residue of model small peptides. Such self-activation was ascribed to the stronger electron-withdrawing capability of the iminium bond with respect to that of the parent aldehyde that stabilized the transition state of the reaction, together with the higher preorganization of the reactive groups in the cationic aldiminium species.
View Article and Find Full Text PDFNucl Med Biol
November 2024
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. Electronic address:
Background: Peritoneal metastasis with micrometastatic cell clusters is a common feature of advanced ovarian cancer. Targeted alpha therapy (TAT) is an attractive approach for treating micrometastatic diseases as alpha particles release enormous amounts of energy within a short distance. A pretargeting approach - leveraging the inverse-electron-demand Diels-Alder reaction between tetrazines (Tz) and trans-cyclooctene (TCO) - can minimize off-target toxicity related to TAT, often associated with full-length antibodies.
View Article and Find Full Text PDFJ Labelled Comp Radiopharm
November 2024
Department of Life Sciences, University of Bath, Bath, UK.
The rise of nucleic acid-based therapeutics continues apace. At the same time, the need for radiolabelled oligonucleotides for determination of spatial distribution is increasing. Complex molecular structures with mostly multiple charges and low solubility in organic solvents increase the challenge of integrating radionuclides.
View Article and Find Full Text PDFEJNMMI Radiopharm Chem
November 2024
Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Background: Pretargeted radioimmunotherapy of cancer has the potential to increase tumor specific uptake of activity when compared with conventional radioimmunotherapy. This is especially true in radioimmunotherapy with nuclides that exhibit a relatively short half-life. When administering antibody-based pretargeting molecules systemically, the antibodies often show a relatively slow clearance from the blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!