Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of efficient and Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) is an urgent requirement in the field of electrochemical water splitting. The electrocatalytic performance of the OER can be greatly enhanced by the synergistic combination of zeolite imidazolate frameworks (ZIFs) and transition-metal phosphides, both of which individually exhibit promising capabilities in this regard. In this study, a novel amorphous NiCoP deposited on ZIF-67 sheets supported on Ni foam (labeled as NiCoP/ZIF-67/NF) as an OER electrocatalytic material was successfully synthesized using a simple, secure, and time-efficient two-step strategy. The experimental results demonstrate that NiCoP/ZIF-67/NF possesses a large active surface area with abundant active sites. Also, the synergistic effect and interaction between NiCoP and ZIF-67, as well as between Ni and Co within NiCoP, effectively enhance its electrochemical performance under alkaline conditions. Consequently, NiCoP/ZIF-67/NF exhibits outstanding catalytic activity for OER with an overpotential (η) of 175 mV at a current density of 10 mA cm and a long-term stability over 40 h at 20 mA cm in a 1.0 M KOH electrolyte. The corresponding analyses suggest that the real active sites responsible for the OER are identified as NiOOH and CoOOH species within the structure of NiCoP/ZIF-67/NF. Additionally, the catalytic function and stability of ZIF-67 toward the OER under alkaline conditions were also briefly discussed. This work provides a novel catalytic material for the OER along with a facile strategy to fabricate superior, efficient, and noble metal-free catalysts suitable for energy-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c01863 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!