Genome-wide association studies have enabled the identification of important genetic factors in many trait studies. However, only a fraction of the heritability can be explained by known genetic factors, even in the most common diseases. Genetic loci combinations, or epistatic contributions expressed by combinations of single nucleotide polymorphisms (SNPs), have been argued to be one of the critical factors explaining some of the missing heritability, especially in oligogenic/polygenic diseases. Rheumatoid arthritis (RA) is a complex disease with more than 100 reported SNP associations, as well as various HLA haplotypes and amino acids; however, many associations between RA and inter-chromosomal SNP combinations are unknown. To discover novel associations of epistatic interactions with high odds ratios in RA, we applied the LAMPLINK method, a systematic enumerative procedure for identifying high-order SNP combinations, to a Japanese RA cohort (discovery cohort; 4024 patients with RA and 7731 controls). We validated the identified associations in a different Japanese cohort (validation cohort; 810 RA patients and 6303 controls). In this study, we identified 90 significant genetic associations in the discovery cohort. Among these, 74 (82.2%) associations were replicated in the validation cohort, and eight combinations were inter-chromosomal, all of which comprised rs7765379 or rs35265698 located in the HLA region. These two SNPs exhibited strong correlations with valine at amino acid position 11 in HLA-DRB1 (HLA-DRB1-11-Val). Finally, we discovered that rs9624 showed an association with RA through an epistatic interaction with HLA-DRB1-11-Val. Overall, LAMPLINK showed high reliability for identifying epistatic genetic contributions hidden in complex traits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s10038-024-01269-y | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
January 2025
National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Zhejiang, Ningbo 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo University, Zhejiang, Ningbo 315211, China. Electronic address:
Pampus argenteus, a species distributed throughout the Indo-West Pacific, plays a significant role in the yield of aquaculture species. However, cultured P. argenteus has always been characterised by unbalanced growth synchronisation among individuals, slow growth rate, and lack of excellent germplasm resources.
View Article and Find Full Text PDFMalar J
January 2025
Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
Background: The current study sought to re-evaluate malaria prevalence, susceptibility to artemisinin-based combination therapy (ACT), transmission patterns and the presence of malaria vectors in the Kikuyu area of the Kenyan Central highlands, a non-traditional/low risk malaria transmission zone where there have been anecdotal reports of emerging malaria infections.
Methods: Sampling of adult mosquitoes was done indoors, while larvae were sampled outdoors in June 2019. The malaria clinical study was an open label non-randomized clinical trial where the efficacy of one ACT drug, was evaluated in two health facilities.
Plants (Basel)
December 2024
Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy.
Saffron ( L.) is one of the most expensive spices in the world due to its strong market demand combined with its labor-intensive production process, which needs a lot of labor and has significant costs. New cultivation methods and traceability systems are required to improve and valorize local Italian saffron production.
View Article and Find Full Text PDFMicrob Genom
January 2025
Center for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.
Genes encoding OXA-48-like carbapenem-hydrolyzing enzymes are often located on plasmids and are abundant among carbapenemase-producing (CPE) worldwide. After a large plasmid-mediated outbreak in 2011, routine screening of patients at risk of CPE carriage on admission and every 7 days during hospitalization was implemented in a large hospital in the Netherlands. The objective of this study was to investigate the dynamics of the hospitals' 2011 outbreak-associated plasmid among CPE collected from 2011 to 2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!