Aging involves the deterioration of organismal function, leading to the emergence of multiple pathologies. Environmental stimuli, including lifestyle, can influence the trajectory of this process and may be used as tools in the pursuit of healthy aging. To evaluate the role of epigenetic mechanisms in this context, we have generated bulk tissue and single cell multi-omic maps of the male mouse dorsal hippocampus in young and old animals exposed to environmental stimulation in the form of enriched environments. We present a molecular atlas of the aging process, highlighting two distinct axes, related to inflammation and to the dysregulation of mRNA metabolism, at the functional RNA and protein level. Additionally, we report the alteration of heterochromatin domains, including the loss of bivalent chromatin and the uncovering of a heterochromatin-switch phenomenon whereby constitutive heterochromatin loss is partially mitigated through gains in facultative heterochromatin. Notably, we observed the multi-omic reversal of a great number of aging-associated alterations in the context of environmental enrichment, which was particularly linked to glial and oligodendrocyte pathways. In conclusion, our work describes the epigenomic landscape of environmental stimulation in the context of aging and reveals how lifestyle intervention can lead to the multi-layered reversal of aging-associated decline.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252340 | PMC |
http://dx.doi.org/10.1038/s41467-024-49608-z | DOI Listing |
Alzheimers Res Ther
January 2025
School of Optometry, University of Alabama at Birmingham, Birmingham, AL, US.
Background: The potential diagnostic value of plasma amyloidogenic beta residue 42/40 ratio (Aβ42/Aβ40 ratio), neurofilament light (NfL), tau phosphorylated at threonine-181 (p-tau181), and threonine-217 (p-tau217) has been extensively discussed in the literature. We have also previously described the association between retinal biomarkers and preclinical Alzheimer's disease (AD). The goal of this study was to evaluate the association, and a multimodal model of, retinal and plasma biomarkers for detection of preclinical AD.
View Article and Find Full Text PDFNat Biomed Eng
January 2025
Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases.
View Article and Find Full Text PDFNat Commun
January 2025
Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions.
View Article and Find Full Text PDFAging (Albany NY)
July 2024
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China.
Backgrounds: Sarcoma (SARC) is a mesenchymal tumor which often responds poorly to systemic therapy. It is therefore important to look for possible biological markers that could tell the prognosis and the progression of SARC.
Methods: A combined evaluation of the Cancer Genome Atlas (TCGA) and genotypic tissue expression (GTEx) portal was used to analyzeLMNB2 expression level in different types of cancer.
Int J Mol Sci
December 2024
Department of Toxicology, School of Public Health, Suzhou Medicine College of Soochow University, Suzhou 215123, China.
Lung cancer remains the leading cause of cancer-related mortality globally, with a poor prognosis primarily due to late diagnosis and limited treatment options. This research highlights the critical demand for advanced prognostic tools by creating a model centered on aging-related genes (ARGs) to improve prediction and treatment strategies for lung adenocarcinoma (LUAD). By leveraging datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), we developed a prognostic model that integrates 14 ARGs using the least absolute shrinkage and selection operator (LASSO) alongside Cox regression analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!