Nanofabrication in silicon, arguably the most important material for modern technology, has been limited exclusively to its surface. Existing lithography methods cannot penetrate the wafer surface without altering it, whereas emerging laser-based subsurface or in-chip fabrication remains at greater than 1 μm resolution. In addition, available methods do not allow positioning or modulation with sub-micron precision deep inside the wafer. The fundamental difficulty of breaking these dimensional barriers is two-fold, i.e., complex nonlinear effects inside the wafer and the inherent diffraction limit for laser light. Here, we overcome these challenges by exploiting spatially-modulated laser beams and anisotropic feedback from preformed subsurface structures, to establish controlled nanofabrication capability inside silicon. We demonstrate buried nanostructures of feature sizes down to 100 ± 20 nm, with subwavelength and multi-dimensional control; thereby improving the state-of-the-art by an order-of-magnitude. In order to showcase the emerging capabilities, we fabricate nanophotonics elements deep inside Si, exemplified by nanogratings with record diffraction efficiency and spectral control. The reported advance is an important step towards 3D nanophotonics systems, micro/nanofluidics, and 3D electronic-photonic integrated systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252398 | PMC |
http://dx.doi.org/10.1038/s41467-024-49303-z | DOI Listing |
Sci Rep
January 2025
Department of Horticulture, Washington State University Northwestern Washington Research and Extension Center, Mount Vernon, WA, 98221, USA.
Biostimulants are an emerging and innovative class of products that may mitigate the adverse effects of extreme heat, but research on their efficacy in fruit crops is limited. This study addressed this knowledge gap by evaluating the performance of three biostimulants, FRUIT ARMOR™, Optysil®, and KelpXpress™ [active ingredients glycine betaine, silicon, and kelp (Ascophyllum nodosum) extract, respectively] applied to three raspberry genotypes exposed to high temperatures (T ≥ 35 °C/day) inside a glasshouse. 'Meeker' consistently maintained high chlorophyll fluorescence (F/F) and photosynthesis under control and biostimulant treatments.
View Article and Find Full Text PDFOrganometallics
January 2025
Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
We report the synthesis and characterization of a series of high- and low-spin dicobalt complexes of the PNNP expanded pincer ligand. Reacting this dinucleating ligand in its neutral form with two equiv of CoCl(tetrahydrofuran) yields a high-spin dicobalt complex featuring one Co inside and one Co outside of the dinucleating pocket. Performing the same reaction in the presence of two equivalents of KOtBu provides access to a high-spin dicobalt complex wherein both Co centers are bound within the PNNP pocket, and this complex also features a bridging OtBu ligand.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Oral Implant Centre, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
Dentin hypersensitivity is primarily caused by the exposure of dentinal tubules due to various factors, so the key to treatment is to effectively seal these exposed tubules. However, traditional dentinal tubule sealants used in clinical practice often fail to adhere securely to the tubule surface when exposed to external stimuli, resulting in a recurrence of sensitivity. In this study, we developed a silicon micromotor that moved autonomously and loaded with silver nanoparticles and a photosensitive adhesive for dentin sensitivity therapy.
View Article and Find Full Text PDFMolecules
January 2025
School of Mechanical Engineering, Chongqing Three Gorges University, Chongqing 404100, China.
Materials (Basel)
December 2024
Aerospace Research Institute of Materials and Processing Technology, Beijing 100076, China.
Carbon-fiber-reinforced carbon and silicon carbide (C/C-SiC) composites were prepared using chemical vapor infiltration (CVI) combined with reactive melt infiltration (RMI). The microstructure and flexural properties of C/C-SiC composites after oxidation in different temperature water vapor environments were studied. The results indicate that the difficulty of oxidation in water vapor can be ranked from easy to difficult in the following order: carbon fiber (CF), pyrolytic carbon (PyC), and ceramic phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!