Background And Purpose: To date, only a few small studies have attempted deep learning-based automatic segmentation of white matter hyperintensity (WMH) lesions in patients with cerebral infarction; this issue is complicated because stroke-related lesions can obscure WMH borders. We developed and validated deep learning algorithms to segment WMH lesions accurately in patients with cerebral infarction using multisite data sets involving 8421 patients with acute ischemic stroke.
Materials And Methods: We included 8421 patients with stroke from 9 centers in Korea. 2D UNet and squeeze-and-excitation (SE)-UNet models were trained using 2408 FLAIR MRIs from 3 hospitals and validated using 6013 FLAIR MRIs from 6 hospitals. WMH segmentation performance was assessed by calculating the Dice similarity coefficient (DSC), the correlation coefficient, and the concordance correlation coefficient compared with a human-segmented criterion standard. In addition, we obtained an uncertainty index that represents overall ambiguity in the voxel classification for WMH segmentation in each patient based on the Kullback-Leibler divergence.
Results: In the training data set, the mean age was 67.4 (SD, 13.0) years, and 60.4% were men. The mean (95% CI) DSCs for UNet in internal testing and external validation were, respectively, 0.659 (0.649-0.669) and 0.710 (0.707-0.714), which were slightly lower than the reliability between humans (DSC = 0.744; 95% CI, 0.738-0.751; = .031). Compared with the UNet, the SE-UNet demonstrated better performance, achieving a mean DSC of 0.675 (95% CI, 0.666-0.685; < .001) in the internal testing and 0.722 (95% CI, 0.719-0.726; < .001) in the external validation; moreover, it achieved high DSC values (ranging from 0.672 to 0.744) across multiple validation data sets. We observed a significant correlation between WMH volumes that were segmented automatically and manually for the UNet ( = 0.917, < .001), and it was even stronger for the SE-UNet ( = 0.933, < .001). The SE-UNet also attained a high concordance correlation coefficient (ranging from 0.841 to 0.956) in the external test data sets. In addition, the uncertainty indices in most patients (86%) in the external data sets were <0.35, with an average DSC of 0.744 in these patients.
Conclusions: We developed and validated deep learning algorithms to segment WMH in patients with acute cerebral infarction using the largest-ever MRI data sets. In addition, we showed that the uncertainty index can be used to identify cases in which automatic WMH segmentation is less accurate and requires human review.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630893 | PMC |
http://dx.doi.org/10.3174/ajnr.A8418 | DOI Listing |
Lifetime Data Anal
January 2025
Institut Camille Jordan, UMR 5208, Université Claude Bernard Lyon 1, Bat. Braconnier, 43, blvd du 11 novembre 1918, F - 69622, Villeurbanne Cedex, France.
Based on the expectile loss function and the adaptive LASSO penalty, the paper proposes and studies the estimation methods for the accelerated failure time (AFT) model. In this approach, we need to estimate the survival function of the censoring variable by the Kaplan-Meier estimator. The AFT model parameters are first estimated by the expectile method and afterwards, when the number of explanatory variables can be large, by the adaptive LASSO expectile method which directly carries out the automatic selection of variables.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Urology, Ji'an Third People's Hospital, Ji'an 343000, Jiangxi, China.
As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures.
View Article and Find Full Text PDFMol Ecol Resour
January 2025
Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
Reduced representation sequencing (RRS) has proven to be a cost-effective solution for sequencing subsets of the genome in non-model species for large-scale studies. However, the targeted nature of RRS approaches commonly introduces large amounts of missing data, leading to reduced statistical power and biased estimates in downstream analyses. Genotype imputation, the statistical inference of missing sites across the genome, is a powerful alternative to overcome the caveats associated with missing sites.
View Article and Find Full Text PDFMayo Clin Proc Digit Health
December 2024
School of Computed and Augmented Intelligence, Arizona State University, Tempe, AZ.
Objective: To report the development and performance of 2 distinct deep learning models trained exclusively on retinal color fundus photographs to classify Alzheimer disease (AD).
Patients And Methods: Two independent datasets (UK Biobank and our tertiary academic institution) of good-quality retinal photographs derived from patients with AD and controls were used to build 2 deep learning models, between April 1, 2021, and January 30, 2024. ADVAS is a U-Net-based architecture that uses retinal vessel segmentation.
J Adv Nurs
January 2025
Department of Nursing and Midwifery, College of Health Wellbeing & Life Sciences, Sheffield Hallam University, Sheffield, UK.
Aim: To highlight the use of corpus linguistics for analysing language data and to provide a worked example of this approach in nursing research.
Design: Methodology discussion paper.
Methods: This paper introduces corpus linguistics as a distinct approach to undertaking qualitative research in nursing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!