Unlike animals, variability in transcription factors (TFs) and their binding regions (TFBRs) across the plants species is a major problem that most of the existing TFBR finding software fail to tackle, rendering them hardly of any use. This limitation has resulted into underdevelopment of plant regulatory research and rampant use of Arabidopsis-like model species, generating misleading results. Here, we report a revolutionary transformers-based deep-learning approach, PTFSpot, which learns from TF structures and their binding regions' co-variability to bring a universal TF-DNA interaction model to detect TFBR with complete freedom from TF and species-specific models' limitations. During a series of extensive benchmarking studies over multiple experimentally validated data, it not only outperformed the existing software by >30% lead but also delivered consistently >90% accuracy even for those species and TF families that were never encountered during the model-building process. PTFSpot makes it possible now to accurately annotate TFBRs across any plant genome even in the total lack of any TF information, completely free from the bottlenecks of species and TF-specific models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250369 | PMC |
http://dx.doi.org/10.1093/bib/bbae324 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!