Echolocating bats rely on precise auditory temporal processing to detect echoes generated by calls that may be emitted at rates reaching 150-200 Hz. High call rates can introduce forward masking perceptual effects that interfere with echo detection; however, bats may have evolved specializations to prevent repetition suppression of auditory responses and facilitate detection of sounds separated by brief intervals. Recovery of the auditory brainstem response (ABR) was assessed in two species that differ in the temporal characteristics of their echolocation behaviors: Eptesicus fuscus, which uses high call rates to capture prey, and Carollia perspicillata, which uses lower call rates to avoid obstacles and forage for fruit. We observed significant species differences in the effects of forward masking on ABR wave 1, in which E. fuscus maintained comparable ABR wave 1 amplitudes when stimulated at intervals of <3 ms, whereas post-stimulus recovery in C. perspicillata required 12 ms. When the intensity of the second stimulus was reduced by 20-30 dB relative to the first, however, C. perspicillata showed greater recovery of wave 1 amplitudes. The results demonstrate that species differences in temporal resolution are established at early levels of the auditory pathway and that these differences reflect auditory processing requirements of species-specific echolocation behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11254387PMC
http://dx.doi.org/10.1121/10.0026624DOI Listing

Publication Analysis

Top Keywords

forward masking
12
call rates
12
echolocating bats
8
high call
8
abr wave
8
bats species-specific
4
species-specific variation
4
variation susceptibility
4
susceptibility acoustic
4
acoustic forward
4

Similar Publications

While telegenetic counseling has increased substantially since the start of the COVID-19 pandemic, previous studies reported concerns around building rapport, nonverbal communication, and the patient-counselor relationship. This qualitative evaluation elicited feedback from genetic counselors, referring clinicians, and patients from a single healthcare organization to understand the user-driven reasons for overall satisfaction and experience. We conducted 22 in-depth, semi-structured interviews with participants from all 3 groups between February 2022 and February 2023.

View Article and Find Full Text PDF

In response to the increasing prevalence of dental diseases, dental health, a vital aspect of human well-being, warrants greater attention. Panoramic X-ray images (PXI) and Cone Beam Computed Tomography (CBCT) are key tools for dentists in diagnosing and treating dental conditions. Additionally, deep learning for tooth segmentation can focus on relevant treatment information and localize lesions.

View Article and Find Full Text PDF

Comparison of Performance for Cochlear-Implant Listeners Using Audio Processing Strategies Based on Short-Time Fast Fourier Transform or Spectral Feature Extraction.

Ear Hear

December 2024

Laboratorio de Audición Computacional y Piscoacústica, Instituto de Neurociencias de Castilla y León, Universidad de Salamanca, Salamanca, Spain.

Objectives: We compared sound quality and performance for a conventional cochlear-implant (CI) audio processing strategy based on short-time fast-Fourier transform (Crystalis) and an experimental strategy based on spectral feature extraction (SFE). In the latter, the more salient spectral features (acoustic events) were extracted and mapped into the CI stimulation electrodes. We hypothesized that (1) SFE would be superior to Crystalis because it can encode acoustic spectral features without the constraints imposed by the short-time fast-Fourier transform bin width, and (2) the potential benefit of SFE would be greater for CI users who have less neural cross-channel interactions.

View Article and Find Full Text PDF

Tactile suppression is linked to movement onset for startle-triggered responses.

Behav Brain Res

March 2025

School of Human Kinetics, University of Ottawa, 200 Lees Ave, Ottawa, ON K1N 6N5, Canada. Electronic address:

The ability to perceive a tactile stimulus is reduced in a moving limb, a phenomenon known as tactile suppression. This sensory attenuation effect is attributed to movement-related gating, which allows the central nervous system to selectively process sensory information. However, the source of this gating is uncertain, with some evidence suggesting a forward-model origin of tactile suppression, and other evidence in support of backward masking from peripheral reafference.

View Article and Find Full Text PDF
Article Synopsis
  • - The paper presents a new transmission scheme using subcarrier indexed modulation (SIM) that controls subcarriers with a key, allowing for secure transmission of both a key and a main message simultaneously.
  • - A four-dimensional hyperchaotic model is employed to enhance security, and power multiplexing is utilized to transmit both signals in parallel without degrading the system's performance.
  • - Experimental results show that the scheme achieves high transmission speeds (54.25 Gb/s) over 2 km of fiber, maintaining excellent performance with a negligible impact on receiver sensitivity and a bit error rate (BER) of 0 for the main signal.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!