When large-scale electric vehicles are connected to the grid for unordered charging, it will seriously affect the stability and security of the power system. To solve this problem, this paper proposes a regional power network optimization scheduling method considering vehicle network interaction. Initially, based on the user behavior characteristics and charging and discharging characteristics of electric vehicles, a charging and discharging behavior model of electric vehicles was established. Based on the Monte Carlo sampling algorithm, the scheduling upper and lower limits of each scheduling cycle of electric vehicles were described, and the scheduling potential of each scheduling cycle of electric vehicles was obtained. Then, the electricity price is then used as an incentive parameter to guide EV users to charge during periods of low electricity prices and participate in discharge during periods of peak electricity prices. Aiming at the highest economic efficiency, the best consumption effect of new energy and the smoothest demand-side power curve of regional power grid, a three-objective optimal dispatching model was established. In the later stage, uncertainty factors are taken into consideration by introducing the concept of interval numbers, and an interval multi-objective optimization dispatching model is established. The two dispatching models are solved by NSGA-II algorithm and improved NSGA-II algorithm, and the Pareto solution set is obtained. Finally, based on the analytic Hierarchy Process (AHP), the optimal scheduling scheme is determined. The Monte Carlo sampling method is used to simulate the user side charging demand, and the effectiveness of this method is verified. In addition, the results of the interval multi-objective optimization model and the deterministic multi-objective optimization model are compared, and it is proved that the solution results of the interval multi-objective model are more adaptive, practical and robust to the uncertain factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251635 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297855 | PLOS |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.
Polymer-based dielectric films are increasingly demanded for devices under high electric fields used in new energy vehicles, photovoltaic grid connections, oil and gas exploration, and aerospace. However, leakage current is one of the significant factors limiting the improvement of the insulation performance. This paper tested the leakage current and condensed state structure characteristics of biaxially oriented polypropylene (BOPP) films and obtained the nonlinear characteristics of leakage current of BOPP films in the range of 40-440 V/μm and 40-110 °C.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.
Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Developing persistent and smart underwater markers is critical for improving navigation accuracy and communication capabilities of autonomous underwater vehicles (AUVs). A wireless acoustic identification tag, which uses a piezoelectric transducer tuned in the broadband ultrasonic range (200-500 kHz), was experimentally demonstrated to achieve highly efficient power transfer (source-to-tag electrical power efficiency of >2% at 6 m) and concurrent high data rate and backscatter level communication (>83.3 kbit s-1, >170 dB sound pressure level at 6 m) with potential operating range ≈ 10 m based on analytical extrapolations.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.
Electric vehicles (EVs) are crucial for addressing the intertwined challenges of climate change and air pollution. The multiaspect benefits of EVs are highly dependent on local climate conditions, yet the impacts of regional heterogeneity in the context of future climate change remain unclear. Here, we develop a systemic modeling framework integrating fleet modeling, emission projection, index decomposition analysis, and detailed cost assessment to identify local drivers and potential trade-offs behind electrification.
View Article and Find Full Text PDFBMC Public Health
January 2025
Department of Public Health, University of California, Merced, 5200 N Lake Road, Merced, CA, 95343, USA.
Background: The San Joaquin Valley (SJV) in California is one of the most polluted regions in the U.S. This study examined favorability for air pollution mitigation policies, interventions, and identified predictors amongst region's residents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!