[Molecular structure and functions of vacuolar processing enzymes in plants].

Postepy Biochem

Zakład Fizjologii Roślin, Wydział Biologii, Uniwersytet im. Adama Mickiewicza w Poznaniu.

Published: January 2024

Vacuolar processing enzymes (VPEs) are plant proteases belonging to the C13 protease family. The specific activity of VPEs was characterized by comparing them to animal caspases. VPEs perform many important functions at various stages of plant ontogenesis, playing a role not only in the proper development of the plant organism but also in plant reactions to biotic and abiotic stress factors. A particularly important role of VPEs is noted in the processing of vacuolar proteins, enabling the production of their mature and active forms. VPEs are involved in programmed cell death, but despite residual evidence, we also suggest that VPEs are involved in autophagy. Based on literature data on autophagy in yeast, we formulate a hypothesis that VPEs during autophagy in plant cells are involved in the degradation of autophagic bodies - one of the final stages of autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.18388/pb.2021_497DOI Listing

Publication Analysis

Top Keywords

vacuolar processing
8
processing enzymes
8
vpes involved
8
vpes
7
plant
5
[molecular structure
4
structure functions
4
functions vacuolar
4
enzymes plants]
4
plants] vacuolar
4

Similar Publications

Pulpitis is an important and prevalent disease within the oral cavity. Thus, animal models are necessary tools for basic research focused on pulpitis. Researchers worldwide often use dogs and miniature pigs to construct animal models of pulpitis.

View Article and Find Full Text PDF

A vacuolar invertase gene modulates sugar metabolism and postharvest fruit quality and stress resistance in tomato.

Hortic Res

January 2025

Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.

Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.

View Article and Find Full Text PDF

The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.

View Article and Find Full Text PDF

Lipophagy is a selective degradation of lipid droplets in lysosomes or vacuoles. Apart from its role in generating energy and free fatty acids for membrane repair, growth, and the formation of new membranes, lipophagy emerges as a key player in other cellular processes and disease pathogenesis. While fungal, plant, and algal cells use microlipophagy, the most prominent form of lipophagy in animal cells is macrolipophagy.

View Article and Find Full Text PDF

How close is autophagy-targeting therapy for Alzheimer's disease to clinical use? A summary of autophagy modulators in clinical studies.

Front Cell Dev Biol

January 2025

Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.

Alzheimer's disease (AD) is a neurodegenerative disorder clinically characterized by progressive decline of memory and cognitive functions, and it is the leading cause of dementia accounting for 60%-80% of dementia patients. A pathological hallmark of AD is the accumulation of aberrant protein/peptide aggregates such as extracellular amyloid plaques containing amyloid-beta peptides and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. These aggregates result from the failure of the proteostasis network, which encompasses protein synthesis, folding, and degradation processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!