A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Marginal integrity of prototype bioactive glass-doped resin composites in class II cavities. | LitMetric

Marginal integrity of prototype bioactive glass-doped resin composites in class II cavities.

Clin Oral Investig

Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, Plattenstrasse 11, Zurich, Switzerland.

Published: July 2024

Objectives: This in vitro study examined the marginal integrity of experimental composite materials doped with bioactive glass (BG).

Materials And Methods: Class-II MOD cavities were prepared and restored with one of the following composite materials: a commercial composite material as a reference (Filtek Supreme XTE), an experimental composite doped with BG 45S5 (C-20), and an experimental composite doped with a fluoride-containing BG (F-20). Six experimental groups (n = 8) were used, as each of the three composites was applied with (+) or without (-) a universal adhesive (Adper Scotchbond Multipurpose). All specimens were subjected to thermocycling (10,000 x, 5-55 °C) and then additionally stored in artificial saliva for eight weeks. Scanning electron micrographs of the mesial and the distal box were taken at three time points (initial, after thermocycling, and after eight weeks of storage in artificial saliva). The margins were classified as "continuous" and "non-continuous" and the percentage of continuous margins (PCM) was statistically analyzed (α = 0.05).

Results: In most experimental groups, thermocycling led to a significant decrease in PCM, while the additional 8-week aging had no significant effect. F-20 + performed significantly better (p = 0.005) after 8 weeks storage in artificial saliva than the reference material with adhesive, while no statistically significant differences were observed at the other two time points. C-20 + exhibited significantly better PCM than the reference material with adhesive after thermocycling (p = 0.026) and after 8 weeks (p = 0.003).

Conclusions: Overall, the experimental composites with BG showed at least as good marginal adaptation as the commercial reference, with an indication of possible re-sealing of marginal gaps.

Clinical Relevance: Maintaining or improving the marginal integrity of composite restorations is important to prevent microleakage and its likely consequences such as pulp irritation and secondary caries.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-024-05824-xDOI Listing

Publication Analysis

Top Keywords

marginal integrity
12
experimental composite
12
artificial saliva
12
composite materials
8
composite doped
8
experimental groups
8
time points
8
weeks storage
8
storage artificial
8
reference material
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!