Organic-Inorganic Rubrene/WS Heterostructure for Broadband Detection and Polarization Imaging.

ACS Appl Mater Interfaces

School of Physical Science and Information Engineering, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng 252059, China.

Published: July 2024

AI Article Synopsis

Article Abstract

Organic single crystals exhibit improved carrier mobility, longer exciton diffusion length, anisotropic charge transport, and unique linear dichroism, while its high exciton binding energy seriously limits the free-carrier generation and photoelectric conversion efficiency. Layered van der Waals heterostructures, which integrate organic crystals with high mobility two-dimensional (2D) inorganic semiconductors, are promising for promoting exciton dissociation and boosting sensitivity by utilizing the interfacial potential and photogating effect. In this work, organic single-crystal rubrene is integrated with a few-layer WS to design the high-performance photodetector. The device exhibits an excellent responsivity of 1000 A W, and a fast speed of 180 μs, which is far superior to the individual WS device. Equally importantly, this device provides excellent polarization detection performance by virtue of the anisotropic properties of rubrene, and the dichroic ratios are 1.56, 1.5, and 1.7 for 375, 405, and 658 nm irradiation, respectively. Finally, several high-resolution single-pixel broadband polarization imaging was demonstrated. Our work shows that organic-inorganic heterostructure is an essential candidate for improving optoelectronics performance and has potential for polarization imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.4c08895DOI Listing

Publication Analysis

Top Keywords

polarization imaging
12
organic-inorganic rubrene/ws
4
rubrene/ws heterostructure
4
heterostructure broadband
4
broadband detection
4
polarization
4
detection polarization
4
imaging organic
4
organic single
4
single crystals
4

Similar Publications

Dynamic Interferometry for Freeform Surface Measurement Based on Machine Learning-Configured Deformable Mirror.

Sensors (Basel)

January 2025

Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China.

Optical freeform surfaces are widely used in imaging and non-imaging systems due to their high design freedom. In freeform surface manufacturing and assembly, dynamic freeform surface measurement that can guide the next operation remains a challenge. To meet this urgent need, we propose a dynamic interferometric method based on a machine learning-configured deformable mirror (DM).

View Article and Find Full Text PDF

Pathogenetic Mechanisms Linking Sarcoidosis to Lymphoma.

Int J Mol Sci

January 2025

Department of Respiratory Medicine, Medical School, Democritus University of Thrace, University General Hospital Dragana, 68100 Alexandroupolis, Greece.

Sarcoidosis and lymphoma share immunopathological characteristics that suggest a complex, interconnected relationship. This article examines the multi-faceted mechanisms linking sarcoidosis to lymphoma, a phenomenon called sarcoidosis-lymphoma syndrome (SLS). SLS is hard to diagnose, requiring distinct criteria and imaging to differentiate overlapping features and histological differences.

View Article and Find Full Text PDF

Design and Fabrication of Ultrathin Metallic Phase Shifters for Visible and Near-Infrared Wavelengths.

Micromachines (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

The polarization state of light is critical for biological imaging, acousto-optics, bio-navigation, and many other optical applications. Phase shifters are extensively researched for their applications in optics. The size of optical elements with phase delay that are made from natural birefringent materials is limited; however, fabricating waveplates from dielectric metamaterials is very complex and expensive.

View Article and Find Full Text PDF

Capillary condensation-driven growth of perovskite nanowire arrays for multi-functional photodetector.

Light Sci Appl

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, Changchun, 130012, China.

Metal-halide perovskite nanowire array photodetectors based on the solution method are valuable in the field of polarized light detection because of their unique one-dimensional array structure and excellent photoelectric performance. However, the limited wettability of liquids poses challenges for achieving large-scale and high-quality perovskite nanowire arrays. To address this issue, we develop a facile method utilizing capillary condensation to grow high-quality centimeter-scale perovskite nanowire arrays.

View Article and Find Full Text PDF

Fast Hadamard-Encoded 7T Spectroscopic Imaging of Human Brain.

Tomography

January 2025

NextGen Precision Health, Department of Radiology, University of Missouri Columbia, 1030 Hitt Street, Columbia, MO 65201, USA.

: The increased SNR available at 7T combined with fast readout trajectories enables accelerated spectroscopic imaging acquisitions for clinical applications. In this report, we evaluate the performance of a Hadamard slice encoding strategy with a 2D rosette trajectory for multi-slice fast spectroscopic imaging at 7T. : Moderate-TE (~40 ms) spin echo and J-refocused polarization transfer sequences were acquired with simultaneous Hadamard multi-slice excitations and rosette in-plane encoding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!