Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544368 | PMC |
http://dx.doi.org/10.1164/rccm.202406-1109ED | DOI Listing |
Front Radiol
January 2025
Department of Biostatistics & Informatics, Colorado School of Public Health, Aurora, CO, United States.
In neuro-oncology, MR imaging is crucial for obtaining detailed brain images to identify neoplasms, plan treatment, guide surgical intervention, and monitor the tumor's response. Recent AI advances in neuroimaging have promising applications in neuro-oncology, including guiding clinical decisions and improving patient management. However, the lack of clarity on how AI arrives at predictions has hindered its clinical translation.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.
The Sharp-van der Heijde score (SvH) is crucial for assessing joint damage in rheumatoid arthritis (RA) through radiographic images. However, manual scoring is time-consuming and subject to variability. This study proposes a multistage deep learning model to predict the Overall Sharp Score (OSS) from hand X-ray images.
View Article and Find Full Text PDFJ Dent
January 2025
Department of Oral & Maxillofacial Radiology, Peking University School & Hospital of Stomatology, Beijing 100081, China; National Center for Stomatology & National Clinical Research Center for Oral Diseases, Beijing 100081, China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China; Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China. Electronic address:
Objectives: In this study, artificial intelligence techniques were used to achieve automated diagnosis and classification of temporomandibular joint (TMJ) degenerative joint disease (DJD) on cone beam computed tomography (CBCT) images.
Methods: An AI model utilizing the YOLOv10 algorithm was trained, validated and tested on 7357 annotated and corrected oblique sagittal TMJ images (3010 images of normal condyles and 4347 images of condyles with DJD) from 1018 patients who visited Peking University School and Hospital of Stomatology for temporomandibular disorders and underwent TMJ CBCT examinations. This model could identify DJD as well as the radiographic signs of DJD, namely, erosion, osteophytes, sclerosis and subchondral cysts.
Front Oncol
January 2025
Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Purpose: To create a system to enable the identification of histological variants of bladder cancer in a simple, efficient, and noninvasive manner.
Material And Methods: In this multicenter diagnostic study, we retrospectively collected basic information and CT images about the patients concerned from three hospitals. An interactive deep learning-based bladder cancer image segmentation framework was constructed using the Swin UNETR algorithm for further features extraction.
Digit Health
January 2025
Independent Researcher, Calgary, Alberta, Canada.
Digital health (DH) and artificial intelligence (AI) in healthcare are rapidly evolving but were addressed synonymously by many healthcare authorities and practitioners. A deep understanding and clarification of these concepts are fundamental and a prerequisite for developing robust frameworks and practical guidelines to ensure the safety, efficacy, and effectiveness of DH solutions and AI-embedded technologies. Categorizing DH into technologies (DHTs) and services (DHSs) enables regulatory, HTA, and reimbursement bodies to develop category-specific frameworks and guidelines for evaluating these solutions effectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!