Unlabelled: Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore colonization and biofilm formation abilities of core members of the honey bee () gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications.
Importance: Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including , , , and , also form biofilms . We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337805 | PMC |
http://dx.doi.org/10.1128/aem.00515-24 | DOI Listing |
BMC Infect Dis
December 2024
Lab Services and Infection Control; Chief, Education and Research, Artemis Hospitals, Sector-51, Gurugram, Haryana, India.
Klebsiella pneumoniae, a pathogen of concern worldwide can be classified as classical K. pneumoniae (cKp) and Hypervirulent K. pneumoniae (HvKp).
View Article and Find Full Text PDFBMC Infect Dis
December 2024
Department of Medical Biochemistry and Microbiology, Biomedical Centre, Uppsala University, Uppsala, Sweden.
Background: Pseudomonas aeruginosa is one of the leading causes of nosocomial infections and the most common multidrug-resistant pathogen. This study aimed to determine antimicrobial resistance patterns, biofilm-forming capacity, and associated factors of multidrug resistance in P. aeruginosa isolates at two hospitals in Addis Ababa, Ethiopia.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:
Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.
View Article and Find Full Text PDFInt J Pharm
December 2024
Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem 9103501, Israel. Electronic address:
Chlorhexidine (CHX) is a gold standard therapeutic agent against clinical oral pathogens. However, its oral use is limited due to unpleasant taste, alteration in taste buds, staining of teeth and mucous membranes. Therefore, CHX-loaded PLGA microneedles (MNs) were fabricated for local and controlled release in the oral cavity, using a casting mold method.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
December 2024
Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India. Electronic address:
Peptidyl prolyl cis/trans isomerases (PPIases), a ubiquitously distributed superfamily of enzymes, associated with signal transduction, trafficking, assembly, biofilm formation, stress tolerance, cell cycle regulation, gene expression and tissue regeneration, is a key regulator of metabolic disorders and microbial virulence. This review assumes an integrative approach, to provide a holistic overview of the structural and functional diversity of PPIases, examining their conformational dynamics, cellular distribution, and physiological significance. We explore their intricate involvement in cellular processes and virulence modulation in both eukaryotic and prokaryotic systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!