Tunable Near-Field Radiative Heat Transfer between Graphene-Coated Magneto-Optical Metasurfaces.

Langmuir

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Published: July 2024

The highly structured design of metasurfaces greatly facilitates the manipulation of near-field radiative heat transfer (NFRHT). In this study, we incorporate magneto-optical materials into metasurfaces to theoretically explore the mechanism for controlling NFRHT between anisotropic magneto-optical metasurfaces. Our findings indicate that the interaction between the magnetization-induced modes, arising from interband transitions of graphene, and the surface modes of InSb under a magnetic field leads to a transition in the heat transfer spectrum from a dual band to a triple band. The modification of the distribution and magnitude of transmission wave vectors in surface electromagnetic modes by magnetic fields serves to modulate the radiative heat flux. By combining active control by a magnetic field with passive structural design of metasurfaces, the regulation of heat flux can be increased by more than 8-fold compared with the planar configuration. Additionally, the magnetic field amplifies the anisotropy of the photon energy distribution induced by the symmetry breaking of the metasurface structure. This study is anticipated to provide a pathway for achieving flexible tuning of NFRHT by combining active and passive regulation. It also opens up possibilities for multiband information transmission and for improving the performance of energy conversion devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c01148DOI Listing

Publication Analysis

Top Keywords

radiative heat
12
heat transfer
12
magnetic field
12
near-field radiative
8
magneto-optical metasurfaces
8
design metasurfaces
8
heat flux
8
combining active
8
heat
5
metasurfaces
5

Similar Publications

This study uses an oceanic energy budget to estimate the ocean heat transport convergence in the North Atlantic during 2005-2018. The horizontal convergence of the ocean heat transport is estimated using ocean heat content tendency primarily derived from satellite altimetry combined with space gravimetry. The net surface energy fluxes are inferred from mass-corrected divergence of atmospheric energy transport and tendency of the ECMWF ERA5 reanalysis combined with top-of-the-atmosphere radiative fluxes from the clouds and the Earth's radiant energy system project.

View Article and Find Full Text PDF

Robust fluorinated cellulose composite aerogels incorporating radiative cooling and thermal insulation for regionally adaptable building thermal management.

Int J Biol Macromol

December 2024

Jiangsu Optoelectronic Functional Materials Engineering Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China. Electronic address:

Passive radiative cooling (PRC) is an emerging sustainable technology that plays a key role for achieving the goal of carbon neutrality. However, several challenges remain for PRC materials in their practical application in building thermal management, including overcooling problems and unsatisfactory cooling efficiency caused by solar absorption and parasitic heat gains. In this work, fluorinated cellulose-based composite aerogels (FCCA) integrating thermal insulation and PRC were developed by a facile manufacturing strategy that combined phase separation and freeze-drying.

View Article and Find Full Text PDF

Ultrafast Thermal Switching Enabled by Transient Polaritons.

ACS Nano

December 2024

School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.

View Article and Find Full Text PDF

Exposure to high temperatures during indoor and outdoor activities increases the risk of heat-related illness such as cramps, rashes, and heatstroke (HS). Fatal cases of HS are ten times more common than serious cardiac episodes in sporting scenarios, with untreated cases leading to mortality rates as high as 80%. Enhancing thermal comfort can be achieved through heat loss in enclosed spaces and the human body, utilizing heat transfer mechanisms such as radiation, conduction, convection, and evaporation, which do not require initial energy input.

View Article and Find Full Text PDF

This work looks into how well Cu-doped zinc oxide works as a photocatalyst when exposed to visible light to break down sulphanilamide. The synthesized samples were characterized by XRD and then FTIR techniques for structural besides compositional analysis. The approximate value of bandgap found out by NBE values of PL spectra showed a decrease in bandgap with doping.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!