A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Homburg-Adelaide toric IOL nomogram: How to predict corneal power vectors from preoperative IOLMaster 700 keratometry and total corneal power in toric IOL implantation. | LitMetric

Purpose: The purpose of this study is to compare the reconstructed corneal power (RCP) by working backwards from the post-implantation spectacle refraction and toric intraocular lens power and to develop the models for mapping preoperative keratometry and total corneal power to RCP.

Methods: Retrospective single-centre study involving 442 eyes treated with a monofocal and trifocal toric IOL (Zeiss TORBI and LISA). Keratometry and total corneal power were measured preoperatively and postoperatively using IOLMaster 700. Feedforward neural network and multilinear regression models were derived to map keratometry and total corneal power vector components (equivalent power EQ and astigmatism components C0 and C45) to the respective RCP components.

Results: Mean preoperative/postoperative C0 for keratometry and total corneal power was -0.14/-0.08 dioptres and -0.30/-0.24 dioptres. All mean C45 components ranged between -0.11 and -0.20 dioptres. With crossvalidation, the neural network and regression models showed comparable results on the test data with a mean squared prediction error of 0.20/0.18 and 0.22/0.22 dioptres and on the training data the neural network models outperformed the regression models with 0.11/0.12 and 0.22/0.22 dioptres for predicting RCP from preoperative keratometry/total corneal power.

Conclusions: Based on our dataset, both the feedforward neural network and multilinear regression models showed good precision in predicting the power vector components of RCP from preoperative keratometry or total corneal power. With a similar performance in crossvalidation and a simple implementation in consumer software, we recommend implementation of regression models in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aos.16742DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704817PMC

Publication Analysis

Top Keywords

corneal power
32
keratometry total
24
total corneal
24
regression models
20
neural network
16
toric iol
12
power
11
corneal
9
iolmaster 700
8
preoperative keratometry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!