Plasma proteometabolome in lung cancer: exploring biomarkers through bidirectional Mendelian randomization and colocalization analysis.

Hum Mol Genet

Department of Thoracic Surgery and Institute of Thoracic Oncology, National Clinical Research Centre for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.

Published: September 2024

Unlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddae110DOI Listing

Publication Analysis

Top Keywords

lung cancer
20
lung
10
mendelian randomization
8
diagnostic biomarkers
8
cancer
6
plasma proteometabolome
4
proteometabolome lung
4
cancer exploring
4
biomarkers
4
exploring biomarkers
4

Similar Publications

TP53 germline testing and hereditary cancer: how somatic events and clinical criteria affect variant detection rate.

Genome Med

January 2025

Hereditary Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Av. Gran Via 199-203, L'Hospitalet del Llobregat, 08908, Spain.

Background: Germline heterozygous pathogenic variants (PVs) in TP53 cause Li-Fraumeni syndrome (LFS), a condition associated with increased risk of multiple tumor types. As the associated cancer risks were refined over time, clinical criteria also evolved to optimize diagnostic yield. The implementation of multi-gene panel germline testing in different clinical settings has led to the identification of TP53 PV carriers outside the classic LFS-associated cancer phenotypes, leading to a broader cancer phenotypic redefinition and to the renaming of the condition as "heritable TP53-related cancer syndrome" (hTP53rc).

View Article and Find Full Text PDF

Background: Whether the intake of whole grain foods can protect against lung cancer is a long-standing question of considerable public health import, but the epidemiologic evidence has been limited. Therefore we aim to investigate the relationship between whole grain food consumption and lung cancer in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO) cohort.

Methods: Diet was assessed with a self-administered Diet History Questionnaire (DHQ) at baseline.

View Article and Find Full Text PDF

Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.

View Article and Find Full Text PDF

B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC.

View Article and Find Full Text PDF

Background: Non-small cell lung cancer (NSCLC) is a disease related to inflammation. Proinflammatory cytokines such as interleukin 17 (IL-17) can induce cancer cell proliferation, metastasis and immune escape. Although NSCLC immune escape is partly due to the interaction between PD-1 and PD-L1 and PD-L1 expression can be upregulated in cancer cells upon stimulation with IL-17, the underlying mechanism of IL-17-triggered PD-L1 gene transcription in NSCLC cells remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!