A Chemoselective Enrichment Strategy for In-Depth Coverage of the Methyllysine Proteome.

Angew Chem Int Ed Engl

Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China.

Published: October 2024

Proteomics is a powerful method to comprehensively understand cellular posttranslational modifications (PTMs). Owing to low abundance, tryptic peptides with PTMs are usually enriched for enhanced coverage by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Affinity chromatography for phosphoproteomes by metal-oxide and pan-specific antibodies for lysine acetylome allow identification of tens of thousands of modification sites. Lysine methylation is a significant PTM; however, only hundreds of methylation sites were identified by available approaches. Herein we report an aryl diazonium based chemoselective strategy that enables enrichment of monomethyllysine (Kme1) peptides through covalent bonds with extraordinary sensitivity. We identified more than 10000 Kme1 peptides from diverse cell lines and mouse tissues, which implied a wide lysine methylation impact on cellular processes. Furthermore, we found a significant amount of methyl marks that were not S-adenosyl methionine (SAM)-dependent by isotope labeling experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202408564DOI Listing

Publication Analysis

Top Keywords

lysine methylation
8
kme1 peptides
8
chemoselective enrichment
4
enrichment strategy
4
strategy in-depth
4
in-depth coverage
4
coverage methyllysine
4
methyllysine proteome
4
proteome proteomics
4
proteomics powerful
4

Similar Publications

Dual targeting PPARα and NPC1L1 metabolic vulnerabilities blocks tumorigenesis.

Cancer Lett

January 2025

Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:

Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.

View Article and Find Full Text PDF

Epigenetic abnormalities play a critical role in colon carcinogenesis, making them a promising target for therapeutic interventions. In this study, we demonstrated that curcumin reduces colon cancer cell survival and that a decrease in lysine methylation was involved in such an effect. This correlated with the downregulation of methyltransferases EZH2, MLL1, and G9a, in both wild-type p53 (wtp53) HCT116 cells and mutant p53 (mutp53) SW480 cells, as well as SET7/9 specifically in wtp53 HCT116 cells.

View Article and Find Full Text PDF

Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease.

Int J Mol Sci

January 2025

Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, 60-632 Poznań, Poland.

Atherosclerosis is accompanied by inflammation that underlies cardiovascular disease (CVD) and its vascular manifestations, including acute stroke, myocardial infarction, and peripheral artery disease, the leading causes of morbidity/mortality worldwide. The monolayer of endothelial cells formed on the luminal surface of arteries and veins regulates vascular tone and permeability, which supports vascular homeostasis. Endothelial dysfunction, the first step in the development of atherosclerosis, is caused by mechanical and biochemical factors that disrupt vascular homeostasis and induce inflammation.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains challenging to treat due to extensive inter- and intra-tumor heterogeneity. This variability demands combination treatments to improve therapeutic outcomes. A significant obstacle in treating GBM is the expression of O-methylguanine-DNA methyltransferase, a DNA repair enzyme that reduces the efficacy of the standard alkylating agent, temozolomide, in about 50% of patients.

View Article and Find Full Text PDF

Introduction: This study designed to examine whether social/ environmental experiences can induce the epigenetic modification, and influence the associated physiology and behaviour. To test this, we have used social stress [prenatal stress (PNS)] model and then housed at environmental enrichment (EE) condition to evaluate the interaction between specific epigenetic modification and its influence on behaviour.

Methods: Pregnant rats were randomly divided into a control group, PNS group, and PNS+EE group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!