Drought stress is a significant environmental challenge affecting global agriculture, leading to substantial reductions in crop yields and overall plant productivity. It induces a cascade of physiological and biochemical changes in plants, including reduced water uptake, stomatal closure, and alterations in hormonal balance, all of which contribute to impaired growth and development. Drought stress diminishes crop production by impacting crucial plant metabolic pathways. Plants possess the ability to activate or deactivate specific sets of genes, leading to changes in their physiological and morphological characteristics. This adaptive response enables plants to evade, endure, or prevent the effects of drought stress. Drought stress triggers the activation of various genes, transcription factors, and signal transduction pathways in plants. In this context, imposing plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy. PGPR, employing diverse mechanisms such as osmotic adjustments, antioxidant activity, and phytohormone production, not only ensures the plant's survival during drought conditions but also enhances its overall growth. This comprehensive review delves into the various mechanisms through which PGPR enhances drought stress resistance, offering a thorough exploration of recent molecular and omics-based approaches to unravel the role of drought-responsive genes. The manuscript encompasses a detailed mechanistic analysis, along with the development of PGPR-based drought stress management in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246373 | PMC |
http://dx.doi.org/10.1007/s12088-024-01201-0 | DOI Listing |
J Exp Bot
December 2024
School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia.
During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
College of Horticulture, Henan Agricultural University, Zhengzhou 450046, PR China.
Drought limits crop growth and yield. Inoculation with plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy to protect crops against drought. However, the number of drought-tolerant PGPR is limited, and the regulation mechanisms remain elusive.
View Article and Find Full Text PDFPlant Signal Behav
December 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.
Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.
View Article and Find Full Text PDFSci Rep
December 2024
Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
The cultivation of common beans (Phaseolus vulgaris L.) in semi-arid regions is affected by drought. To explore potential alleviation strategies, we investigated the impact of inoculation with Bacillus velezensis, and the application of acetylsalicylic acid (ASA) via foliage application (FA), which promote plant growth and enhance stress tolerance.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education)/College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University/Academy of Agricultural Sciences of Southwest University, Chongqing, 400715, China. Electronic address:
Rab GTPases are a class of small GTP-binding proteins, play crucial roles in the membrane transport machinery with in eukaryotic cells. They dynamically regulate the precise targeting and tethering of transport vesicles to specific compartments by transitioning between active and inactive states. In plants, Rab GTPases are classified into eight distinct subfamilies: Rab1/D, Rab2/B, Rab5/F, Rab6/H, Rab7/G, Rab8/E, Rab11/A, and Rab18/C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!