AI Article Synopsis

  • Age-related macular degeneration (AMD) is a major cause of blindness in people over 55 years old, affecting the retina and leading to central vision loss, with geographic atrophy (GA) being the most challenging subtype to treat.
  • Recent advancements in treatment include new drugs like pegcetacoplan and avacincaptad pegol, which slow GA progression but cannot reverse vision loss.
  • Optogenetics is being explored as a potential therapy by making surviving retinal cells sensitive to light, allowing for the possibility of transmitting visual information even after vision loss has occurred.

Article Abstract

Age-related macular degeneration (AMD) is a growing public health concern given the aging population and it is the leading cause of blindness in developed countries, affecting individuals over the age of 55 years. AMD affects the retinal pigment epithelium (RPE) and Bruch's membrane in the macula, leading to secondary photoreceptor degeneration and eventual loss of central vision. Late AMD is divided into two forms: neovascular AMD and geographic atrophy (GA). GA accounts for around 60% of late AMD and has been the most challenging subtype to treat. Recent advances include approval of new intravitreally administered therapeutics, pegcetacoplan (Syfovre) and avacincaptad pegol (Iveric Bio), which target complement factors C3 and C5, respectively, which slow down the rate of enlargement of the area of atrophy. However, there is currently no treatment to reverse the central vision loss associated with GA. Optogenetics may provide a strategy for rescuing visual function in GA by imparting light-sensitivity to the surviving inner retina (i.e., retinal ganglion cells or bipolar cells). It takes advantage of residual inner retinal architecture to transmit visual stimuli along the visual pathway, while a wide range of photosensitive proteins are available for consideration. Herein, we review the anatomical changes in GA, discuss the suitability of optogenetic therapeutic sensors in different target cells in pre-clinical models, and consider the advantages and disadvantages of different routes of administration of therapeutic vectors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11246919PMC
http://dx.doi.org/10.3389/fnins.2024.1415575DOI Listing

Publication Analysis

Top Keywords

age-related macular
8
macular degeneration
8
suitability optogenetic
8
geographic atrophy
8
central vision
8
late amd
8
amd
5
degeneration suitability
4
optogenetic therapy
4
therapy geographic
4

Similar Publications

Vitamin E is renowned for its potent antioxidant properties, crucial for shielding cells against oxidative stress and damage. Deficiency in this vitamin can lead to various health issues, including neurodegenerative diseases, due to its pivotal role in preserving cell membrane integrity and combating cellular oxidative damage. While its importance for overall health, including neurodegeneration, is acknowledged, the specific correlation between vitamin E deficiency and distinct ocular neurodegenerative disorders need to be further explored.

View Article and Find Full Text PDF

Senescent retinal pigment epithelial cells play a key role in neovascular age-related macular degeneration (nAMD); however, the mechanisms underlying the angiogenic ability of these cells remain unclear. Herein, we investigated the effects of the senescent adult retinal pigment epithelial cell line-19 (ARPE-19) on wound healing, cell migration and survival, and tube formation abilities of human umbilical vein endothelial cells (HUVECs). Additionally, we used Brown Norway rats to establish a laser-induced choroidal neovascularization (CNV) model for further nAMD-related studies.

View Article and Find Full Text PDF

Potential guidelines for cataract surgery and rehabilitation in visually impaired patients: Literature analysis.

Aging Med (Milton)

December 2024

Department of Sense Organs, Faculty of Medicine and Odontology, Rare Retinal Diseases and Ocular Electrophysiology Centre, Umberto I Policlinic Sapienza University of Rome Rome Italy.

Cataracts can reduce the quality of vision in visually impaired patients who already have a visual impairment. The most common causes of low vision include age-related macular degeneration (AMD), high myopia (HM), diabetic retinopathy (DR), glaucoma (GL), and inherited degenerative ocular diseases. The surgery aims to improve their independence, quality of life, and ability to engage in daily, social, and work activities.

View Article and Find Full Text PDF

Objective: This study systematically investigates the causal relationships between 731 immune cell phenotypes and age-related macular degeneration (AMD) using comprehensive Mendelian randomization (MR) analyses. The goal is to identify immune cell factors that contribute to or protect against AMD, thereby clarifying the immunological mechanisms underlying AMD pathophysiology and informing prevention and treatment strategies.

Methods: Univariable, bidirectional, and multivariable MR analyses were conducted to evaluate the associations between immune cells and AMD.

View Article and Find Full Text PDF

C3aR1-Deletion Delays Retinal Degeneration in a White-Light Damage Mouse Model.

Invest Ophthalmol Vis Sci

January 2025

Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Purpose: In the aging retina, persistent activation of microglia is known to play a key role in retinal degenerative diseases like age-related macular degeneration (AMD). Furthermore, dysregulation of the alternative complement pathway is generally accepted as the main driver for AMD disease progression and microglia are important producers of local complement and are equipped with complement receptors themselves. Here, we investigate the involvement of anaphylatoxin signaling, predominantly on Iba1+ cell activity, in light-induced retinal degeneration as a model for dry AMD, using anaphylatoxin receptor knockout (KO) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!