Background: Research indicates that preterm infants requiring prolonged mechanical ventilation often exhibit suboptimal neurodevelopment at follow-up, coupled with altered brain development as detected by magnetic resonance imaging (MRI) at term-equivalent age (TEA). However, specific regions of brain dysmaturation and the subsequent neurodevelopmental phenotype following early-life adverse respiratory exposures remain unclear. Additionally, it is uncertain whether brain dysmaturation mediates neurodevelopmental outcomes after respiratory adversity. This study aims to investigate the relationship between early-life adverse respiratory exposures, brain dysmaturation at TEA, and the developmental phenotype observed during follow-up in extremely preterm infants.
Methods: 89 infants born < 29 weeks' gestation from 2019 to 2021 received MRI examinations at TEA for structural and lobe brain volumes, which were adjusted with sex-and-postmenstrual-age expected volumes for volume residuals. Assisted ventilation patterns in the first 8 postnatal weeks were analyzed using kmlShape analyses. Patterns for motor, cognition, and language development were evaluated from corrected age 6 to 12 months using Bayley Scales of Infant Development, third edition. Mediation effects of brain volumes between early-life respiratory exposures and neurodevelopmental phenotypes were adjusted for sex, gestational age, maternal education, and severe brain injury.
Results: Two distinct respiratory trajectories with varying severity were identified: improving (n = 35, 39%) and delayed improvement (n = 54, 61%). Compared with the improving group, the delayed improvement group exhibited selectively reduced brain volume residuals in the parietal lobe (mean - 4.9 cm, 95% confidence interval - 9.4 to - 0.3) at TEA and lower motor composite scores (- 8.7, - 14.2 to - 3.1) at corrected age 12 months. The association between delayed respiratory improvement and inferior motor performance (total effect - 8.7, - 14.8 to - 3.3) was partially mediated through reduced parietal lobe volume (natural indirect effect - 1.8, - 4.9 to - 0.01), suggesting a mediating effect of 20%.
Conclusions: Early-life adverse respiratory exposure is specifically linked to the parietal lobe dysmaturation and neurodevelopmental phenotype of motor delay at follow-up. Dysmaturation of the parietal lobe serves as a mediator in the connection between respiratory adversity and compromised motor development. Optimizing respiratory critical care may emerge as a potential avenue to mitigate the consequences of altered brain growth and motor developmental delay in this extremely preterm population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247839 | PMC |
http://dx.doi.org/10.1186/s11689-024-09546-9 | DOI Listing |
Cell Rep Med
December 2024
Centre for Reproductive Health, Institute of Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4TJ, UK. Electronic address:
Preterm birth correlates with brain dysmaturation and neurocognitive impairment. The gut microbiome associates with behavioral outcomes in typical development, but its relationship with neurodevelopment in preterm infants is unknown. We characterize fecal microbiome in a cohort of 147 neonates enriched for very preterm birth using 16S-based and shotgun metagenomic sequencing.
View Article and Find Full Text PDFNeurotherapeutics
November 2024
The Cain Foundation Laboratories, The Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA. Electronic address:
Little is known about the mechanisms that generate epileptic spasms following perinatal brain injury. Recent studies have implicated reduced levels of Insulin-like Growth Factor 1 (IGF-1) in these patients' brains. Other studies have reported low levels of the inhibitory neurotransmitter, GABA.
View Article and Find Full Text PDFBrain Sci
September 2024
Division of Neonatology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA.
Background: Perinatal infection is a major risk factor for diffuse white matter injury (dWMI), which remains the most common form of neurological disability among very preterm infants. The disease primarily targets oligodendrocytes (OL) lineage cells in the white matter but also involves injury and/or dysmaturation of neurons of the gray matter. This study aimed to investigate whether neuroinflammation preferentially affects the cellular compositions of the white matter or gray matter.
View Article and Find Full Text PDFJ Clin Med
September 2024
Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA.
Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities in CHD infants compared to healthy controls and secondarily to predict clinical outcomes. We also validated our BDS in a preclinical mouse model of hypoplastic left heart syndrome.
View Article and Find Full Text PDFBrain Behav Immun
October 2024
University of Auckland, Auckland, New Zealand. Electronic address:
Background: Exposure to postnatal systemic inflammation is associated with increased risk of brain injury in preterm infants, leading to impaired maturation of the cerebral cortex and adverse neurodevelopmental outcomes. However, the optimal method for identifying cortical dysmaturation is unclear. Herein, we compared the utility of electroencephalography (EEG), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) at different recovery times after systemic inflammation in newborn rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!