A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning approach to femoral AVN detection in digital radiography: differentiating patients and pre-collapse stages. | LitMetric

Objective: This study aimed to evaluate a new deep-learning model for diagnosing avascular necrosis of the femoral head (AVNFH) by analyzing pelvic anteroposterior digital radiography.

Methods: The study sample included 1167 hips. The radiographs were independently classified into 6 stages by a radiologist using their simultaneous MRIs. After that, the radiographs were given to train and test the deep learning models of the project including SVM and ANFIS layer using the Python programming language and TensorFlow library. In the last step, the test set of hip radiographs was provided to two independent radiologists with different work experiences to compare their diagnosis performance to the deep learning models' performance using the F1 score and Mcnemar test analysis.

Results: The performance of SVM for AVNFH detection (AUC = 82.88%) was slightly higher than less experienced radiologists (79.68%) and slightly lower than experienced radiologists (88.4%) without reaching significance (p-value > 0.05). Evaluation of the performance of SVM for pre-collapse AVNFH detection with an AUC of 73.58% showed significantly higher performance than less experienced radiologists (AUC = 60.70%, p-value < 0.001). On the other hand, no significant difference is noted between experienced radiologists and SVM for pre-collapse detection. ANFIS algorithm for AVNFH detection with an AUC of 86.60% showed significantly higher performance than less experienced radiologists (AUC = 79.68%, p-value = 0.04). Although reaching less performance compared to experienced radiologists statistically not significant (AUC = 88.40%, p-value = 0.20).

Conclusions: Our study has shed light on the remarkable capabilities of SVM and ANFIS as diagnostic tools for AVNFH detection in radiography. Their ability to achieve high accuracy with remarkable efficiency makes them promising candidates for early detection and intervention, ultimately contributing to improved patient outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251364PMC
http://dx.doi.org/10.1186/s12891-024-07669-7DOI Listing

Publication Analysis

Top Keywords

deep learning
12
experienced radiologists
12
performance svm
8
avnfh detection
8
performance
5
learning approach
4
approach femoral
4
femoral avn
4
avn detection
4
detection digital
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!