Background: Detection of cancer and identification of tumor origin at an early stage improve the survival and prognosis of patients. Herein, we proposed a plasma cfDNA-based approach called TOTEM to detect and trace the cancer signal origin (CSO) through methylation markers.
Methods: We performed enzymatic conversion-based targeted methylation sequencing on plasma cfDNA samples collected from a clinical cohort of 500 healthy controls and 733 cancer patients with seven types of cancer (breast, colorectum, esophagus, stomach, liver, lung, and pancreas) and randomly divided these samples into a training cohort and a testing cohort. An independent validation cohort of 143 healthy controls, 79 liver cancer patients and 100 stomach cancer patients were recruited to validate the generalizability of our approach.
Results: A total of 57 multi-cancer diagnostic markers and 873 CSO markers were selected for model development. The binary diagnostic model achieved an area under the curve (AUC) of 0.907, 0.908 and 0.868 in the training, testing and independent validation cohorts, respectively. With a training specificity of 98%, the specificities in the testing and independent validation cohorts were 100% and 98.6%, respectively. Overall sensitivity across all cancer stages was 65.5%, 67.3% and 55.9% in the training, testing and independent validation cohorts, respectively. Early-stage (I and II) sensitivity was 50.3% and 45.7% in the training and testing cohorts, respectively. For cancer patients correctly identified by the binary classifier, the top 1 and top 2 CSO accuracies were 77.7% and 86.5% in the testing cohort (n = 148) and 76.0% and 84.0% in the independent validation cohort (n = 100). Notably, performance was maintained with only 21 diagnostic and 214 CSO markers, achieving a training AUC of 0.865, a testing AUC of 0.866, and an integrated top 2 accuracy of 83.1% in the testing cohort.
Conclusions: TOTEM demonstrates promising potential for accurate multi-cancer detection and localization by profiling plasma methylation markers. The real-world clinical performance of our approach needs to be investigated in a much larger prospective cohort.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247868 | PMC |
http://dx.doi.org/10.1186/s12885-024-12626-7 | DOI Listing |
Biochem Genet
January 2025
Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.
View Article and Find Full Text PDFClin Exp Med
January 2025
Department of Thoracic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
Introduction Recently, immune cells within the tumor microenvironment (TME) have become crucial in regulating cancer progression and treatment responses. The dynamic interactions between tumors and immune cells are emerging as a promising strategy to activate the host's immune system against various cancers. The development and progression of hepatocellular carcinoma (HCC) involve complex biological processes, with the role of the TME and tumor phenotypes still not fully understood.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.
The neurobiological mechanisms driving the ictal-interictal fluctuations and the chronification of migraine remain elusive. We aimed to construct a composite genetic-microRNA model that could reflect the dynamic perturbations of the disease course and inform the pathogenesis of migraine. We prospectively recruited four groups of participants, including interictal episodic migraine (i.
View Article and Find Full Text PDFBackground: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.
Zhongguo Dang Dai Er Ke Za Zhi
January 2025
Department of Pediatrics, Sichuan Provincial Women's and Children's Hospital/Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
Objectives: To explore the predictive factors for non-response to intravenous immunoglobulin (IVIG) in children with Kawasaki disease (KD) and to establish an IVIG non-response prediction scoring model for the Sichuan region.
Methods: A retrospective study was conducted by collecting clinical data from children with KD admitted to four tertiary hospitals in Sichuan Province between 2019 and 2023. Among them, 940 children responded to IVIG, while 74 children did not respond.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!