Dynamic Covalent Chemistry (DCC) enables the development of responsive molecular systems through the integration of reversible bonds at the molecular level. These systems are thermodynamically stable and capable of undergoing various molecular assemblies and transformations, allowing them to adapt to changes in environmental conditions like temperature and pH. Introducing DCC into the field of polymer science has led to the design of Single-Chain Nanoparticles (SCNPs), which are formed by self-folding via intramolecular crosslinking mechanisms. Defined by their adaptability, SCNPs mimic biopolymers in size and functionality. Biodynamers, a subclass of SCNPs, are specifically designed for their stimuli-responsive and tunable, dynamic properties. Mimicking complex biological structures, their scope of application includes target-specific and pH-responsive drug delivery, enhanced cellular uptake and endosomal escape. In this manuscript, we discuss the integration of DCC for the design of SCNPs, focusing particularly on the characteristics of biodynamers and their biomedical and pharmaceutical applications. By underlining their potential, we highlight the factors driving the growing interest in SCNPs, providing an overview of recent developments and future perspectives in this research field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499429 | PMC |
http://dx.doi.org/10.1007/s13346-024-01665-z | DOI Listing |
Chem Sci
December 2024
Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, CNRS, ENSCM Montpellier France
Dynamic covalent polymers (DCPs) recently emerged as smart siRNA delivery vectors, which dynamically self-assemble through siRNA templating and depolymerize in a controlled manner. Herein, we report the dynamic combinatorial screening of cationic and amphiphilic peptide-based monomers. We provide experimental evidence, by mass spectrometry analyses, of the siRNA-templated formation of DCPs, and show that amphiphilic DCPs display superior activity in terms of siRNA complexation and delivery in cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University, Colleg of Chemistry and Molecular Sciences, Jingmin, 475004, Kaifeng, CHINA.
Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researches have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs.
View Article and Find Full Text PDFPLoS Comput Biol
January 2025
Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
Quantification of intrahepatic covalently closed circular DNA (cccDNA) is a key for evaluating an elimination of hepatitis B virus (HBV) in infected patients. However, quantifying cccDNA requires invasive methods such as a liver biopsy, which makes it impractical to access the dynamics of cccDNA in patients. Although HBV RNA and HBV core-related antigens (HBcrAg) have been proposed as surrogate markers for evaluating cccDNA activity, they do not necessarily estimate the amount of cccDNA.
View Article and Find Full Text PDFBackground: Neurological disorders are at epidemic levels in the world today. Various proteins are being targeted for the development of novel molecular therapeutics; however, no small-molecule inhibitors have been discovered. Recent studies suggest that there are few molecules in clinical trials for various secretase (α, β, and γ), caspase, and calpain inhibitors.
View Article and Find Full Text PDFChem Sci
December 2024
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
The packing of organic molecular crystals is often dominated by weak non-covalent interactions, making their rearrangement under external stimuli challenging to understand. We investigate a pressure-induced single-crystal-to-single-crystal (SCSC) transformation between two polymorphs of 2,4,5-triiodo-1-imidazole using machine learning potentials. This process involves the rearrangement of halogen and hydrogen bonds combined with proton transfer within a complex solid-state system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!