AI Article Synopsis

  • Adaptation is essential for neural systems to adjust to varying sensory inputs efficiently, but traditional artificial neural networks (ANNs) struggle with this flexibility.
  • A new deep learning model for the retina was developed, integrating photoreceptor adaptation into convolutional neural networks (CNNs), enhancing their predictive capabilities.
  • This approach, which builds on previous models of retinal ganglion cell activity, shows improved accuracy in forecasting responses to complex visual stimuli, demonstrating the value of mimicking neural adaptation in AI systems.

Article Abstract

Adaptation is a universal aspect of neural systems that changes circuit computations to match prevailing inputs. These changes facilitate efficient encoding of sensory inputs while avoiding saturation. Conventional artificial neural networks (ANNs) have limited adaptive capabilities, hindering their ability to reliably predict neural output under dynamic input conditions. Can embedding neural adaptive mechanisms in ANNs improve their performance? To answer this question, we develop a new deep learning model of the retina that incorporates the biophysics of photoreceptor adaptation at the front-end of conventional convolutional neural networks (CNNs). These conventional CNNs build on 'Deep Retina,' a previously developed model of retinal ganglion cell (RGC) activity. CNNs that include this new photoreceptor layer outperform conventional CNN models at predicting male and female primate and rat RGC responses to naturalistic stimuli that include dynamic local intensity changes and large changes in the ambient illumination. These improved predictions result directly from adaptation within the phototransduction cascade. This research underscores the potential of embedding models of neural adaptation in ANNs and using them to determine how neural circuits manage the complexities of encoding natural inputs that are dynamic and span a large range of light levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251147PMC
http://dx.doi.org/10.1038/s41467-024-50114-5DOI Listing

Publication Analysis

Top Keywords

neural networks
12
neural adaptation
8
neural
8
artificial neural
8
adaptation
5
biophysical neural
4
adaptation mechanisms
4
mechanisms enable
4
enable artificial
4
networks capture
4

Similar Publications

Background: Dialysis Access (DA) stenosis impacts hemodialysis efficiency and patient health, necessitating exams for early lesion detection. Ultrasound is widely used due to its non-invasive, cost-effective nature. Assessing all patients in large hemodialysis facilities strains resources and relies on operator expertise.

View Article and Find Full Text PDF

The increasing utilization of deep learning models in drug repositioning has proven to be highly efficient and effective. In this study, we employed an integrated deep-learning model followed by traditional drug screening approach to screen a library of FDA-approved drugs, aiming to identify novel inhibitors targeting the TNF-α converting enzyme (TACE). TACE, also known as ADAM17, plays a crucial role in the inflammatory response by converting pro-TNF-α to its active soluble form and cleaving other inflammatory mediators, making it a promising target for therapeutic intervention in diseases such as rheumatoid arthritis.

View Article and Find Full Text PDF

Background: Dyspnoea is one of the emergency department's (ED) most common and deadly chief complaints, but frequently misdiagnosed and mistreated. We aimed to design a diagnostic decision support which classifies dyspnoeic ED visits into acute heart failure (AHF), exacerbation of chronic obstructive pulmonary disease (eCOPD), pneumonia and "other diagnoses" by using deep learning and complete, unselected data from an entire regional health care system.

Methods: In this cross-sectional study, we included all dyspnoeic ED visits of patients ≥ 18 years of age at the two EDs in the region of Halland, Sweden, 07/01/2017-12/31/2019.

View Article and Find Full Text PDF

Memristive Ion Dynamics to Enable Biorealistic Computing.

Chem Rev

December 2024

Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States.

Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention.

View Article and Find Full Text PDF

Background/objectives: Calculating the radiation dose from CT in F-PET/CT examinations poses a significant challenge. The objective of this study is to develop a deep learning-based automated program that standardizes the measurement of radiation doses.

Methods: The torso CT was segmented into six distinct regions using TotalSegmentator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!