Fourier's law dictates that heat flows from warm to cold. Nevertheless, devices can be tailored to cloak obstacles or even reverse the heat flow. Mathematical transformation yields closed-form equations for graded, highly anisotropic thermal metamaterial distributions needed for obtaining such functionalities. For simple geometries, devices can be realized by regular conductor distributions; however, for complex geometries, physical realizations have so far been challenging, and sub-optimal solutions have been obtained by expensive numerical approaches. Here we suggest a straightforward and highly efficient analytical de-homogenization approach that uses optimal multi-rank laminates to provide closed-form solutions for any imaginable thermal manipulation device. We create thermal cloaks, rotators, and concentrators in complex domains with close-to-optimal performance and esthetic elegance. The devices are fabricated using metal 3D printing, and their omnidirectional thermal functionalities are investigated numerically and validated experimentally. The analytical approach enables next-generation free-form thermal meta-devices with efficient synthesis, near-optimal performance, and concise patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11250795 | PMC |
http://dx.doi.org/10.1038/s41467-024-49630-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!