Ion mobility spectrometry (IMS) is a widely used gas-phase separation technique, particularly when coupled with mass spectrometry (MS). Modern IMS instruments often apply elevated reduced field strengths for improved ion separation and ion focusing. These alter the collision dynamics and further drive ion reaction processes that can change the analyte's structure. As a result, the measured arrival time distribution (ATD) can change with the applied reduced field strengths. In this work, we systematically study how the ion collision dynamics and the ion reaction dynamics, as a function of the reduced field strength, can alter the ATD. To this end, we investigate 2,6-di--butylpyridine, methanol, and ethyl acetate using a home-built drift tube IMS coupled to a home-built MS and extensive first-principles Monte Carlo modeling. We show how elevated reduced field strengths can actually lower resolving power through increased ion diffusion and how the field dependency of the ion mobility can introduce uncertainties to collision cross sections (CCS) calculated from the measured mobilities. On top of the collision dynamics, we show how chemical transformation processes that alter the analyte's CCS, e.g., dynamic clustering or fragmentation, can lead to broadened, shifted, or non-Gaussian ATDs and how sensitive these processes are to the applied field strengths. We highlight how first-principles ion dynamics simulations can help to understand and even harness the mentioned effects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295131 | PMC |
http://dx.doi.org/10.1021/acs.analchem.4c02010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!