Revealing the effector-host molecular interactions is crucial for understanding the host immunity against Plasmopara viticola and devising innovative disease management strategies. As a pathogenic oomycete causing grapevine downy mildew, Plasmopara viticola employs various effectors to manipulate the defense systems of host plants. One of these P. viticola derived effectors is necrosis- and ethylene-inducing peptide 1 (Nep1) -like protein (PvNLP7), which has been known to elicit cell death and immune responses in plants. However, the underlying molecular mechanisms remain obscure, prompting the focus of this study. Through yeast two-hybrid screening, we have identified the Vitis rotundifolia ADP-ribosylation factor (VrARF1) as a host interactor of PvNLP7. This interaction is corroborated through bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (Co-IP) assays. Heterologous expression of VrARF1 in Nicotiana benthamiana verifies its accumulation in both the cytoplasm and nucleus, and induction of cell death. Moreover, the VrARF1 gene is strongly induced during early P. viticola infection and upon PvNLP7 transient expression. Overexpression of the VrARF1 gene in grapevine and N. benthamiana enhances resistance to P. viticola and Phytophthora capsici, respectively, via induction of defense related genes PR1 and PR2. Conversely, virus-induced gene silencing (VIGS) of NbARF1 in N. benthamiana, homologous to VrARF1, markedly attenuates PvNLP7-triggered cell death and reduces the expression of four PTI marker genes (PTI5, Acre31, WRKY7 and Cyp71D20) and two defense related genes (PR1 and PR2), rendering plants transiently transformed with PvNLP7 more susceptible to oomycete P. capsici. These findings highlight the role of ARF1 in mediating PvNLP7-induced immunity and indicate its potential as a target for engineering disease-resistant transgenic plants against oomycete pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2024.112194 | DOI Listing |
Phytopathology
January 2025
China Agricultural University, Plant Pathology, No.2 Yuanmingyuan West Road, Beijing, China, 100193;
Traditional assessments of grapevine susceptibility to grapevine downy mildew (GDM) caused by rely on the visual evaluation of leaf symptoms. In this study, we used a well-established quantitative real-time PCR TaqMan assay (real-time PCR) to quantify the number of infecting 12 grapevine cultivars under controlled conditions. The molecular disease index (MDI), derived from molecular detection methods, reflects the relative abundance of pathogens in plant tissues during the latent infection phase.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 50, Nyon, 1260, Switzerland.
Background: Priming plants with natural products is extensively studied in the agricultural field to reduce the use of synthetic and copper-based pesticides. Previous studies have shown that Oregano essential oil vapour (OEOV) is an effective priming agent against downy mildew (DM) in grapevine (Vitis vinifera L. cv.
View Article and Find Full Text PDFPlant Pathol J
December 2024
Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea.
Plasmopara viticola causes grape downy mildew, one of the most notorious diseases of cultivated grapes that damage vineyards worldwide. The pathogen secretes various effector molecules to infect and modulate the host biological processes. In this study, we aimed to evaluate the roles of KPvRxLR27, an arginine-any amino acid-leucine-arginine (RxLR) effector isolated from P.
View Article and Find Full Text PDFPlant J
December 2024
Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology, Via XXVIII Aprile 26, 31015, Conegliano, TV, Italy.
The implementation of genome editing strategies in grapevine is the easiest way to improve sustainability and resilience while preserving the original genotype. Among others, the Mildew Locus-O (MLO) genes have already been reported as good candidates to develop powdery mildew-immune plants. A never-explored grapevine target is NPR3, a negative regulator of the systemic acquired resistance.
View Article and Find Full Text PDFG3 (Bethesda)
January 2025
MYCSA, INRAE, Villenave d'Ornon F-33140, France.
Plasmopara viticola, the causal agent of grapevine downy mildew, is a biotrophic oomycete engaged in a tight coevolutionary relationship with its host. Rapid adaptation of the pathogen is favored by annual sexual reproduction that generates genotypic diversity. With the aim of studying the recombination landscape across the P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!