Cardiomegaly is among the disorders categorized by a structural enlargement of the heart by any of the situations including pregnancy, resulting in damage to heart muscles and causing trouble in normal heart functioning. Cardiomegaly can be defined in terms of dilatation with an enlarged heart and decreased left or biventricular contraction. The genetic origin of cardiomegaly is becoming more evident due to extensive genomic research opening up new avenues to ensure the use of precision medicine. Cardiomegaly is usually assessed by using an array of radiological modalities, including computed tomography (CT) scans, chest X-rays, and MRIs. These imaging techniques have provided an important opportunity for the physiology and anatomy of the heart. This review aims to highlight the complexity of cardiomegaly, highlighting the contribution of both ecological and genetic variables to its progression. Moreover, we further highlight the worth of precise clinical diagnosis, which comprises blood biomarkers and electrocardiograms (EKG ECG), demonstrating the significance of distinguishing between numerous basic causes. Finally, the analysis highlights the extensive variation of treatment lines, such as lifestyle modifications, prescription drugs, surgery, and implantable devices, although highlighting the critical need for individualized and personalized care.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cpcardiol.2024.102748DOI Listing

Publication Analysis

Top Keywords

cardiomegaly
6
heart
6
cardiomegaly navigating
4
navigating uncharted
4
uncharted territories
4
territories heart
4
heart failure
4
failure multimodal
4
multimodal radiological
4
radiological journey
4

Similar Publications

Prognostic Implications of Cardiac Geometry in Cirrhosis: Findings From a Large Cohort.

Liver Int

February 2025

General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China.

Background And Aims: Cirrhosis is characterised by hyperdynamic circulation, which contributes to cirrhotic cardiomyopathy (CCM). However, the expert consensus on CCM did not initially include cardiac structure because of scant evidence. Therefore, this study investigated the associations of cardiac chamber geometry with mortality and CCM.

View Article and Find Full Text PDF

The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF

In contrast to adult mammalian hearts, the adult zebrafish heart efficiently replaces cardiomyocytes lost after injury. Here we reveal shared and species-specific injury response pathways and a correlation between Hmga1, an architectural non-histone protein, and regenerative capacity, as Hmga1 is required and sufficient to induce cardiomyocyte proliferation and required for heart regeneration. In addition, Hmga1 was shown to reactivate developmentally silenced genes, likely through modulation of H3K27me3 levels, poising them for a pro-regenerative gene program.

View Article and Find Full Text PDF

Necroptosis, a type of programmed cell death, has been increasingly linked to cardiovascular disease development, yet its role in dilated cardiomyopathy (DCM) remains unclear. In this study, we analyzed the GSE5406 dataset from the GEO database to explore necroptosis-related prognostic signatures in DCM using LASSO regression. We identified five necroptosis-related genes (BID, CAMK2B, GLUL, HSP90AB1, CHMP5) that define a necroptosis-related signature with strong predictive value, evidenced by ROC curve areas of 0.

View Article and Find Full Text PDF

Loss of Bcl2-associated athanogene 3 (BAG3) is associated with dilated cardiomyopathy (DCM). BAG3 regulates sarcomere protein turnover in cardiomyocytes; however, the function of BAG3 in other cardiac cell types is understudied. In this study, we used an isogenic pair of BAG3-knockout and wild-type human induced pluripotent stem cells (hiPSCs) to interrogate the role of BAG3 in hiPSC-derived cardiac fibroblasts (CFs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!