Heritability and genetic covariance/correlation quantify the marginal and shared genetic effects across traits. They offer insights on the genetic architecture of complex traits and diseases. To explore how genetic variations contribute to brain function variations, we estimated heritability and genetic correlation across cortical thickness, surface area, and volume of 33 anatomically predefined regions in left and right hemispheres, using summary statistics of genome-wide association analyses of 31,968 participants in the UK Biobank. To characterize the relationships between these regions of interest, we constructed a genetic network for these regions using recursive two-way cut-offs in similarity matrices defined by genetic correlations. The inferred genetic network matches the brain lobe mapping more closely than the network inferred from phenotypic similarities. We further studied the associations between the genetic network for brain regions and 30 complex traits through a novel composite-linkage disequilibrium score regression method. We identified seven significant pairs, which offer insights on the genetic basis for regions of interest mediated by cortical measures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367654 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2024.120739 | DOI Listing |
J Med Virol
January 2025
Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA.
Genet Epidemiol
January 2025
Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.
Large-scale gene-environment interaction (GxE) discovery efforts often involve analytical compromises for the sake of data harmonization and statistical power. Refinement of exposures, covariates, outcomes, and population subsets may be helpful to establish often-elusive replication and evaluate potential clinical utility. Here, we used additional datasets, an expanded set of statistical models, and interrogation of lipoprotein metabolism via nuclear magnetic resonance (NMR)-based lipoprotein subfractions to refine a previously discovered GxE modifying the relationship between physical activity (PA) and HDL-cholesterol (HDL-C).
View Article and Find Full Text PDFFEBS J
January 2025
The FEBS Journal Editorial Office, Cambridge, UK.
The FEBS Journal publishes primary papers as well as reviews in the molecular life sciences relating to the molecules and mechanisms underpinning biological processes. Editor-in-Chief Seamus Martin shares some thoughts on the nature of conducting research, some highlights of the past year at the journal, and what is in store for 2025.
View Article and Find Full Text PDFAddict Biol
January 2025
Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany.
The ability of environmental cues to trigger alcohol-seeking behaviours is thought to facilitate problematic alcohol use. Individuals' tendency to attribute incentive salience to cues may increase the risk of addiction. We sought to study the relationship between incentive salience and alcohol addiction using non-preferring rats to model the heterogeneity of human alcohol consumption, investigating both males and females.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.
Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.
Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!